

- **Global climate change and the Baltic Sea ecosystem:**
- 2 direct and indirect effects on species, communities and
- 3 ecosystem functioning
- 4
 5 Markku Viitasalo^{1*} & Erik Bonsdorff²
 6
 7 ¹ Finnish Environment Institute, Marine Research Centre, Latokartanonkaari 11, FI-00790 Helsinki,
 8 Finland
 9 ² Environmental and marine biology, Faculty of Science and Engineering, Åbo Akademi University,
 10 FI-20500 Turku, Finland
 11
 12 *Correspondence to: Markku Viitasalo (markku.viitasalo@syke.fi)
- 13

14	Abstract
15	
16	Climate change has multiple direct and indirect potentially synergistic effects on Baltic Sea species,
17	organism communities, and on ecosystem functioning, through physical and biogeochemical
18	environmental characteristics of the sea. Associated indirect and secondary effects on species
19	interactions, trophic dynamics and ecosystem function are expected to be significant. Evidence on
20	effects of climate are compiled from and reviewed for field studies, experimental work, as well as
21	modelling studies primarily from published literature after 2010.
22	The responses vary within and between species groups, even between sibling species. Such
23	subtle differences, as well as secondary feedbacks and altered trophic pathways, make projections
24	difficult. Some common patterns arise from the wealth of recent studies, however. It is likely that the
25	combined effects of increased external nutrient loads, stratification and internal loading will improve
26	the conditions for cyanobacterial blooms in large parts of the Baltic. In the northernmost areas the
27	increasing allochtonous DOM may further complicate the picture by increasing heterotrophy and by
28	decreasing food web efficiency. This effect may, however, be counteracted by the intensification of
29	the bacteria-flagellate-microzooplankton-mesozooplankton link, which may change the system from a
30	bottom-up controlled one to a top-down controlled one.
31	In deep benthic communities, continued eutrophication may promote higher sedimentation of
32	organic matter and increase zoobenthic biomasses, but eventually increasing stratification and
33	hypoxia/anoxia will disrupt benthic-pelagic coupling, leading to reduced benthic biomass. In the
34	photic benthic systems warmer winters with less ice and nutrient increase enhances eutrophication.
35	The projected salinity decline suppresses marine species, and temperature increase overgrowth of
36	perennial macroalgae by annual filamentous alga throughout the growing-season, and major changes
37	in the marine entire ecosystem are expected. The changes in environmental conditions probably also
38	lead to increased establishment of non-indigenous species, potentially affecting food web dynamics in
39	large areas of the Baltic Sea.
40	However, several modelling studies have concluded that nutrient reductions according to the
41	Baltic Sea Action Plan of Helsinki Commission may be a stronger driver for ecosystem functions in
42	the Baltic Sea than climate change. Such studies highlight the importance of studying the Baltic Sea
43	as an interlinked socio-ecological system.
44	Knowledge gaps include uncertainties in projecting the future salinity level as well as
45	stratification under different climate forcings. This weakens our ability to project how overall
46	biodiversity, pelagic productivity, fish populations, and macroalgal communities may change in the
47	future. Experimental work must be better integrated into studies of food web dynamics, to get a more
48	comprehensive view of the responses of the pelagic and benthic systems to climate change, from
49	bacteria to fish. Few studies have holistically investigated the shallow water ecosystems holistically.
50	There are complex climate-induced interactions and multiple feedbacks between algae, grazers and

- 3
- 51 their predators, that are poorly known, as are the effects of non-native invasive species. Finally, both
- 52 2D species distribution models and 3D ecosystem models could benefit from better integration of
- 53 approaches including physical, chemical and biological parameters.
- 54
- 55 Keywords: Global climate change, biodiversity, species, communities, food webs, ecosystem
- 56 functioning, Baltic Sea
- 57

4

58 **1. Introduction**

59

60	Climate change has multiple effects on Baltic sea species, communities and ecosystem functioning,
61	through its effects on oceanographic, biogeochemical parameters of the sea, and associated indirect
62	effects on species interactions, trophic dynamics and ecosystem function mechanisms, potentially
63	affecting both the marine biota and human society alike (Paasche et al., 2015; Chen, 2021; Stenseth et
64	al., 2020). Hence, detailed knowledge of these mechanisms and processes are vital for the
65	understanding and management of the Baltic Sea as an ecosystem (Blenckner et al., 2021).
66	These overall effects have been reviewed in two earlier synthesis-studies
67	(The_Bacc_Author_Team, 2008; The_Bacc_Ii_Author_Team, 2015). Since then, a wealth of field-,
68	experimental and modelling studies have shed more light into the complex interactions between
69	'climate' (the large-scale physical drivers) and the Baltic Sea system (Meier et al., 2021). In this
70	paper, we review these effects again, primarily based on literature published after year 2010. Firstly,
71	evidence is compiled from documented responses of species, populations and communities to climate-
72	induced changes in temperature, salinity, ocean acidification as well as other biogeochemical
73	parameters. Secondly, a large number of experimental studies, investigating the same parameters are
74	reviewed. Thirdly, the complex effects of climate change on the marine food webs and food web
75	dynamics are analyzed based on studies where multiple species or trophic levels have been studied.
76	Finally, a number of modelling studies are reviewed. The main challenge when analyzing global
77	climate change-induced effects on ecosystems is the possible synergistic effects between climate and
78	other environmental drivers, such as eutrophication, hypoxia, fishing, habitat modifications, and
79	levels of harmful substances, as all of these may be influenced by changes in temperature, salinity and
80	acidification, which then in turn may have profound impacts on parts of or entire ecosystems and their
81	functioning in time and space (Reusch et al., 2018; Stenseth et al., 2020; Bonsdorff, 2021).
82	
83	2. Effects on species and communities
84	
85	2.1. Microbial communities
86	

87 The effects of projected ocean acidification on microbes have been studied together with ocean

88 warming (OAW). For the spring bloom microbial communities (example from the sea area around the

89 island Öland in the Baltic Proper), OA alone had a limited impact, but when combined with increased

90 temperature, the communities changed markedly (Lindh et al., 2013). In the southern Baltic Sea (Kiel

91 Bight) the impact of OA was also limited to certain dominant OTUs (operational taxonomic units), as

- 92 the bacterial community mainly responded to temperature and phytoplankton succession (Bergen et
- 93 al., 2016).

94	In experiments using a natural summer microplanktonic community, where CO2 was increased
95	and salinity decreased (from 6 to 3 psu), the biovolume of heterotrophic bacteria declined (Wulff et
96	al., 2018). In experiments with increasing temperature (from 16 to 18-20 degrees °C) and reduced
97	salinity (from 6.9 to 5.9 PSU) in the Baltic Proper (NW Gotland Sea) the microbial community
98	showed mixed responses, i.e., no conclusive evidence of direct climate-induced change. Further
99	evidence of potential change in marine microbial communities were presented by (Berner et al.,
100	2018). At reduced salinity levels, the heterotrophic bacteria community changed drastically and
101	resembled communities at high temperature, indicating synergistic effects of temperature and salinity.
102	It was suggested that the increase in bacterial biomass was caused by the decay of filamentous
103	cyanobacteria (Berner et al., 2018). This highlights the importance of considering food web effects
104	(both bottom-up and top-down) on microbial communities under climate change.
105	
106	2.2. Phytoplankton and Cyanobacteria
107	
108	The growing season of phytoplankton has significantly prolonged with warming temperatures during
109	the past few decades (Kahru et al., 2016). For instance in the western Baltic Sea, it now extends from
110	February to December (Wasmund et al., 2019). The earlier and prolonged spring bloom has been
111	attributed to changes in environmental conditions associated with global change (Groetsch et al.,
112	2016), including more sunshine and less windy conditions (Hjerne et al., 2019). The spring species
113	communities have also shifted from dominance of early blooming diatoms to later blooming
114	dinoflagellates and the autotrophic ciliate Mesodinium rubrum (Hjerne et al., 2019; Hällfors et al.,
115	2013; Kuosa et al., 2017; Klais et al., 2011), due to changes in climate and weather patterns, including
116	ice cover and wind conditions (Klais et al., 2013).
117	The amount of Cyanobacteria has increased and the phytoplankton biomass maximum, which
118	in the 1980's was in spring, is now in July-August. This shift has been explained by a complex
119	interaction between warming, eutrophication and increased top-down pressure (Suikkanen et al.,
120	2013). In the Gulf of Bothnia, salinity decline was also an important factor for phytoplankton
121	community change in 1979 to 2012 (Kuosa et al., 2017).
122	Experimental evidence supports findings that climate change can and will drive changes in the
123	pelagic primary production (Sommer et al., 2012), and a thorough review illustrating benthic-pelagic
124	coupling shows ecosystem-wide consequences of altered pelagic primary production (Griffiths et al.,
125	2017), probably also impacting food web dynamics (Kortsch et al., 2021).
126	There is, however, a discrepancy on the relative effects of eutrophication and climate in
127	explaining past changes in phytoplankton biomass and communities. In the long-term data, variable
128	results can be seen, according to area and dominating species group (Wasmund et al., 2011; Groetsch
129	et al., 2016). Certain studies have found evidence of eutrophication effects which have been modified
130	by climate-induced variations in temperature and salinity (Hällfors et al., 2013; Olofsson et al., 2020),

6

131 and a connection with the Baltic Sea Index has also been demonstrated (Griffiths et al., 2020). Other 132 studies did not find any explanation for the observed change in community composition, and 133 concluded that phytoplankton community in the Baltic Sea is not in a steady state (Olli et al., 2011), 134 or noted that stochastic dynamics at local scales confound any commonalities between phytoplankton 135 groups (Griffiths et al., 2020). 136 The projected increase in precipitation is expected to increase river runoff and nutrient load into 137 the sea, especially in the northern Baltic Sea (Huttunen et al., 2015), and together with increased 138 internal loading of nutrients, several modelling studies project an increased phytoplankton biomass 139 until the end of the century (Meier et al., 2012a; Meier et al., 2012b; Skogen et al., 2014; Ryabchenko 140 et al., 2016). There is also evidence that nutrient reduction in combination with predicted climate 141 change may induce a shift from pelagic to benthic primary production (Lindegren et al., 2012). 142 While ocean acidification (OA) has a negative effect on many organisms, it may enhance 143 phytoplankton productivity due to increased CO₂ concentration in water. E.g. the biomass of southern 144 Baltic autumn phytoplankton, biomass increased in mesocosms simulating OA, also under warm 145 conditions (Sommer et al., 2015). In many experiments, however, OA had little effects on community 146 composition, fatty acid composition or biovolumes of phytoplankton in spring or autumn (Paul et al., 147 2015; Bermudez et al., 2016; Olofsson et al., 2019). Even when (positive) effects were detected, they 148 were mainly caused by an associated release of grazing by copepod nauplii in low temperature 149 treatments (Paul et al., 2016). 150 It has been suggested that climate change may increase blooms and toxicity of species such as 151 the dinoflagellate Alexandrium ostenfeldii (Kremp et al., 2016; Kremp et al., 2012), and growth rate, 152 biovolume and intracellular toxin concentration of the Baltic cyanobacterium Dolichospermum sp. 153 may increase with elevated temperature (+4°C) (Brutemark et al., 2015; Wulff et al., 2018) and with 154 decreased salinity (from 6 to 3) (Wulff et al., 2018). These studies suggest that Cyanobacteria will get 155 vet another competitive advantage against diatoms and dinoflagellates in a future Baltic Sea.

156

157 **2.3. Zooplankton**

158

159 Several studies have confirmed that marine copepod species have declined, while euryhaline and 160 limnetic, often small-sized, species increase in abundance (Hänninen et al., 2015; Suikkanen et al., 161 2013). The decline of marine taxa has been linked to the decline of salinity, while the increase of 162 brackish-water taxa has been, directly or indirectly, positively affected by the temperature increase. 163 (Mäkinen et al., 2017). Species that reside in the upper water layers, such as the copepod Acartia spp, 164 are mostly affected by temperature driven increase in food availability, whereas species inhabiting the 165 deep layers, such as older stages of *Pseudocalanus acuspes*, are more dependent on salinity and 166 predation pressure (Ehrnsten, 2020; Otto et al., 2014b; Otto et al., 2014a; Mäkinen et al., 2017).

167	Small-scale impacts on species-level may affect reproductive success, and thus influence both
168	populations and communities (Möller et al., 2015).
169	The effects of climate-driven variations in temperature and ocean acidification (OA) on
170	zooplankton have been studied experimentally. In Acartia sp., a dominant copepod in the northern
171	Baltic Sea, warming decreased egg viability, nauplii development and adult survival (Vehmaa et al.,
172	2013), and both warming (Garzke et al., 2015) and OA (Vehmaa et al., 2016) had negative effects on
173	adult female size. This suggests that the projected OAW may affect the populations of these dominant
174	copepods in the coming decades. Subtle effects on zooplankton functional groups, such as a shift to a
175	dominance by cladocerans and rotifers, have also been shown as a result of warming (Jansson et al.,
176	2020), and it seems likely that the zooplankton community will undergo significant change as climate-
177	induced warming and reduced salinity continues.
178	
179	2.4. Macroalgae and vascular plants
180	
181	Long-term changes in Baltic Sea macroalgae and charophytes have mostly been explained by
182	combined or synergistic simultaneous changes in salinity, wind exposure, nutrient availability and
183	water transparency (Gubelit, 2015; Blindow et al., 2016; Rinne and Salovius-Laurén, 2020), as well
184	as biotic interactions (Korpinen et al., 2007). For the brown algae bladderwrack Fucus spp., light
185	availability, which may also be indirectly affected by climate-induced increase in nutrients, affects the
186	local coverage (Lappalainen et al., 2019). A documented long-term decrease of water transparency in
187	1936 to 2017 has reduced favorable sea floor areas for Fucus spp. by 45% (Sahla et al., 2020). The
188	conclusion for coastal ecosystems has, however, been that eutrophication, whether being caused
189	solely by anthropogenic nutrient loads, or amplified by climate change, has been the most important
190	pressure affecting the shallow coastal water areas of the Baltic Sea (Olsson et al., 2015).
191	The direct effects of increasing temperature, decreasing salinity and pH on bladderwrack Fucus
192	vesiculosus have been investigated by experimental studies. Ocean acidification (OA) appears to have
193	a relatively small effect on macroalgae (Al-Janabi et al., 2016a; Wahl et al., 2019), while temperature
194	effects may be significant. The effects of increasing temperature are not linear, however. Growth or
195	photosynthesis is not impaired under projected temperature increase (from 15 to 17.5 $^{\circ}$ C) but at
196	extreme temperatures, simulating heat waves (27 to 29 °C), photosynthesis declines, growth ceases
197	and necrosis starts (Graiff et al., 2015; Takolander et al., 2017b). Necrosis is also enhanced by low
198	salinity (4 PSU) (Takolander et al., 2017b), and under very low salinity (2.5 PSU) the sexual
199	reproduction of F. vesiculosus ceases (Rothäusler et al., 2019; Rothäusler et al., 2018).
200	OAW may also act in concert with hypoxia, in areas where upwellings bring hypoxic water
201	close to the surface. In a three-day experiment simulating an upwelling event, hypoxic water caused
202	severe mortality of Fucus germlings (Al-Janabi et al., 2016b).

203	Climate induced decline in salinity may also affect communities via its direct effect on the
204	physiology of individual populations and species. A retreat of marine species towards the south and
205	west has been predicted for bladderwrack, eelgrass and blue mussel, and some 40-50 other species
206	affiliated to these (Vuorinen et al., 2015). Species distribution modelling studies have confirmed that
207	this, mainly salinity-induced, decrease will cause habitat fragmentation and significantly reduce the
208	occurrence and biomass of bladderwrack, with large effects on the biodiversity and ecosystem
209	functioning of the shallow water communities of the northern Baltic Sea (Takolander et al., 2017a;
210	Jonsson et al., 2018; Kotta et al., 2019).
211	It is not certain if Fucus vesiculosus can adapt to the anticipated changes. It has been suggested
212	that Baltic marine species have, due to local adaptation, isolation and genetic endemism, an increased
213	risk of local extinction and diminished potential for evolutionary rescue following environmental
214	change (Johannesson et al., 2011). The dispersal rate of locally adapted genotypes may not keep pace
215	with estimated velocity of salinity decline, because of the restricted dispersal and long generation time
216	of F. vesiculosus (Jonsson et al., 2018). However, some experimental studies have showed that
217	different sibling groups of F. vesiculosus have different responses to OAW (Al-Janabi et al., 2016a;
218	Al-Janabi et al., 2016b), and that F. vesiculosus has phenotypic plasticity and tolerance against
219	salinity change (Rothäusler et al., 2018; Rugiu et al., 2018b, a). It has also been shown that Fucus
220	radicans, an endemic congener of F. vesiculosus which is more tolerant to low salinity, might be able
221	to replace F. vesiculosus in the northernmost Baltic (Rugiu et al., 2018b). This adaptive capability
222	may at least delay the most drastic consequences of climate change on bladderwrack.
223	Similar experiments on climate change effects as done with bladderwrack have also been made
224	with other macroalgae and certain vascular plants. In laboratory and field experiments (in the Gulf of
225	Riga), OA increased the growth of the opportunistic green alga Ulva intestinalis (Pajusalu et al., 2013;
226	Pajusalu et al., 2016). This suggests that OA could favour such fast-growing species and induce an
227	overgrowth of Fucus by annual green algae. Other studies showed that photosynthesis of charophytes
228	increased under high pCO2 treatments, whereas the eelgrass Zostera marina did not respond to the
229	elevated pCO ₂ alone (Pajusalu et al., 2015). Salinity decline is projected to decrease the distributional
230	ranges of Z. marina and the red algae Furcellaria lumbricalis, whereas temperature increases
231	probably favours charophytes. Charophytes will however not replace other key habitat forming
232	species because they occupy sheltered soft bottom areas (Torn et al., 2020). A study performed for the
233	southernmost Baltic Sea coupled species distribution and biogeochemical modelling to project how
234	projected wind fields, hydrodynamic conditions and nutrient abatement scenarios affect the
235	distribution of eelgrass Zostera marina in the future (2062-2066). It was concluded that nutrient
236	reductions that fulfill the Helsinki Commission's Baltic Sea Action Plan (BSAP) will lead to an
237	expansion of eelgrass coverage, despite potentially harmful effects on eelgrass distribution caused by
238	a projected stormier climate (Bobsien et al., 2021). The rapidly changing marine environment in the

9

239 Baltic Sea however pose an evolutionary risk, especially for populations with specific adaptations, 240 such as relicts, which may be at risk for local extinctions (Johannesson et al., 2011). 241 Overall, observations of past changes, experimental work and modelling studies suggest that 242 climate change can cause complex responses in relation to other environmental factors (e.g. 243 eutrophication) and influence carbon storage in both macroalgae and vascular plants in the Baltic Sea 244 (Jonsson et al., 2018; Takolander et al., 2017a; Röhr et al., 2016; Salo et al., 2020; Bobsien et al., 245 2021). 246 247 2.5. Zoobenthos 248 249 Soft bottom benthic communities are dependent on several biogeochemical variables, and climate 250 change related parameters have been shown to act as drivers for the long-term progression of 251 zoobenthic communities (Rousi et al., 2019; Weigel et al., 2015; Ehrnsten et al., 2020). For instance, 252 in the SW coast of Finland, a drastic community change, where amphipods were replaced by Baltic 253 clam Limecola balthica and the non-indigenous polychaete Marenzelleria spp., took place. It was best 254 explained by an increase in near-bottom temperature and by fluctuations in salinity and oxygen (Rousi 255 et al., 2013). As for benthic biomass, food availability and oxygen conditions have been the most 256 important factors, but it is also suggested that, in the future, climate-induced changes in salinity, 257 temperature and eutrophication will also be of importance (Timmermann et al., 2012; Ehrnsten et al., 258 2019a; Ehrnsten et al., 2019b). 259 In the Åland Islands (northern Baltic Sea), zoobenthos variations were associated with salinity 260 decline during 1983-2012 (Snickars et al., 2015), and environmentally driven shifts in the links 261 between zoobenthos and benthic-feeding fish assemblages were recorded. Long-term climate-induced 262 shifts in zoobenthos and other trophic levels have also been described (Törnroos et al., 2019; 263 Forsblom et al., 2021), and in all of these cases, interactions between the physical climate-controlled 264 drivers and secondary impacts (mainly eutrophication and/or hypoxia) have been registered. It is 265 notable that eutrophication-induced hypoxia is by no means limited to the deep basins of the Baltic 266 Sea (Conley et al., 2011). Especially the mosaic archipelagoes of the northern Baltic Sea, which have 267 limited water exchange, are prone to hypoxia (Virtanen et al., 2018a). As climate change will affect 268 such rapidly warming areas, late summer hypoxia may increase especially within the coastal areas of 269 the northern Baltic Sea, and contribute to the "vicious circle of eutrophication" (Vahtera et al., 2007) 270 by enhancing internal loading of phosphorus to the system. 271 The effects of warming on invertebrates are non-linear. In experiments, respiration and growth 272 of the isopod *Idotea balthica* first increased until 20°C, and then decreased at 25°C (Ito et al., 2019). 273 Therefore, heat waves may pose a severe threat to sublittoral invertebrates. Different species show 274 different responses to single and sequential heat waves, however, resulting in a change in community

275 structure (Pansch et al., 2018). Many marine invertebrates will directly and indirectly suffer from

10

276	decreasing salinity. In experiments simulating projected changes in temperature and salinity, the
277	survival of the isopod Idotea balthica decreased, albeit with variations between and within regions
278	(Rugiu et al., 2018c), and a combination of experimental studies and species distribution modelling
279	demonstrated that abundances of I. balthica will be significantly reduced, mainly due to the salinity-
280	induced decline of its host macroalgae, Fucus vesiculosus (Kotta et al., 2019).
281	Ocean acidification has various effects on benthic invertebrates. The size and time to settlement
282	of pelagic larvae of the Baltic clam Limecola/Macoma balthica increased with OA, suggesting a
283	developmental delay (Jansson et al., 2016), while OA had no effects on larvae of the barnacle
284	Amphibalanus improvisus (Pansch et al., 2012). Short (12 h) or long-term (2 week) exposures to OA
285	did not have significant effects on the isopod Saduria entomon either (Jakubowska et al., 2013).
286	Controversial results were obtained for the isopod Idotea balthica, from three different sea areas:
287	North Sea, Kattegat, and the Baltic Sea. The populations from more saline habitats were not
288	significantly affected by OA, while the Baltic Sea population showed 100 % mortality (Wood et al.,
289	2014). It was suggested that the Baltic I. balthica had higher levels of oxidative stress, and the
290	combined stress became lethal to them.
291	
292	2.6. Non-indigenous invertebrates
293	
294	It is often suggested that climate change will favour invasions of non-indigenous species worldwide
295	(Jones and Cheung, 2015). It has also been shown that native and non-native species tend to inhabit
296	separate niches in the Baltic Sea. The non-native species typically occur in areas characterized by
297	reduced salinity, high temperatures, high proportion of soft seabed and decreased wave exposure,
298	whereas most native species display an opposite pattern (Jänes et al., 2017). This suggest that the
299	former areas are more prone to further range expansion of non-native species than the latter.
300	Disentangling factors facilitating invasive or non-native species demands long-term surveys, and data
301	from multiple environments in order to distinguish climate-related effects from other ecosystem-level
302	drivers (Bailey et al., 2020), and there is no conclusive evidence that non-indigenous species will gain
303	competitive advantages from climate-induced change, such as heat-waves (Henseler et al., 2021).
304	Modelled scenarios of temperature and salinity have also been used to project how the change in the
305	abiotic environment could affect NIS already present in the Baltic Sea. The analysis suggests an
306	increase of Ponto-Caspian cladocerans in the pelagic community, and an increase in dreissenid
307	bivalves, amphipods and mysids in the coastal benthic areas of the northern Baltic Sea until 2100
308	(Holopainen et al., 2016).

309

310 2.7. Fish

312	Sprat and herring are in the Baltic Sea influenced by various environmental and anthropogenic
313	factors, including nutrition, predation and fisheries, but also by climatic variations. Sprat has probably
314	benefited from the increasing seawater temperature (Voss et al., 2011; Mackenzie et al., 2012; Eero et
315	al., 2016). Especially in 1990 to 2020 the populations have been affected by both climate and top-
316	down control, i.e. cod predation and fisheries (Eero et al., 2016).
317	Increasing seawater temperature has also made it possible for certain warm water Atlantic
318	species, such as anchovy (Reusch et al., 2018) and sole and turbot (Sparrevohn et al., 2013) to occur
319	more abundantly in Kattegat and the westernmost Baltic Sea. Such northward migrations may be
320	caused by both global climate change and by variations in the North Atlantic Oscillation (NAO), the
321	Atlantic Multidecadal Oscillation (AMO), as well as contraction of the subpolar gyre. It seems
322	evident that fish communities in the Baltic Sea and in the adjacent marine regions may undergo
323	drastic change with increasing temperatures, decreasing salinities and increasing instances of
324	hypoxia/anoxia (Reusch et al., 2018; Stenseth et al., 2020), which in turn may lead to altered food
325	web dynamics (Woods et al., 2021), also in the Baltic Sea (Eero et al., 2021).
326	As for coastal fish, the distribution of pikeperch (Sander lucioperca) expanded towards north
327	along the coasts of the Bothnian Sea, apparently due to the warming of waters (Pekcan-Hekim et al.,
328	2011). For many coastal piscivores (perch, pike, pike-perch), as well as cyprinids, the eutrophication
329	status of coastal waters is however an equally or more important factor for distribution than climatic
330	variation (Bergstrom et al., 2016; Snickars et al., 2015). A long-term study (over four decades) made
331	at different coastal areas of the Baltic Sea illustrates that it is hard to disentangle the abiotic and biotic
332	interactions, e.g. between fish and their food-sources (benthos), and climate-related drivers thus
333	appear significant on a multidecadal time-scale across a large spatial scale (Törnroos et al., 2019). The
334	study also highlights possible decoupling of benthic-feeding fish from long-term changes of
335	zoobenthos.
336	Future climatic variations may affect fish in the Baltic Sea through their effects on water
337	temperature, salinity, oxygen and pH, as well as nutrients, which indirectly affect food availability for
338	fish. The responses of cod larvae to ocean acidification (OA), also in combination with warming
339	(OAW), have been studied experimentally. In some studies, no effect of OA or OAW on hatching,
340	survival or development rates of cod larvae was found (Frommel et al., 2013), while in others
341	mortality of cod larvae doubled when treated with high end projections (RCP8.5) of OA. When the
342	projected increase of mortality was included into a stock-recruitment model, recruitment of western
343	Baltic Cod declined to an average of 8 % of the current recruitment (Stiasny et al., 2016). Also,
344	several modelling studies project low abundances of cod towards the end of the century, due to the
345	decrease of 'cod reproductive volume' (Niiranen et al., 2013; Wåhlström et al., 2020), although the
346	large importance of fisheries to the recovery potential of cod stocks has been pointed out (Cardinale
347	and Svedäng, 2011).

348	Climate change may also have positive effects on fish stocks. Increasing spring and summer
349	temperatures have in modelling studies been projected to gradually increase productivity and stocks of
350	sprat (Voss et al., 2011; Mackenzie et al., 2012; Niiranen et al., 2013). For herring the results are more
351	variable: both increase (Bartolino et al., 2014) and a short-term decrease (until 1950) (Niiranen et al.,
352	2013) have been projected.
353	
354	3. Climate change and ecosystem structure and function
355	
356	The marine food webs of the Baltic Sea have been, and are projected to be, impacted by climate
357	change-related variables by altering the physical environment for several species, by impacting micro-
358	evolution of species in the Baltic Sea, and by synergistic effects of climate change and other
359	environmental drivers such as eutrophication and hypoxia (Niiranen et al., 2013; Wikner and
360	Andersson, 2012; Schmidt et al., 2020; Pecuchet et al., 2020; Ehrnsten et al., 2020). It has even been
361	shown that the entire ecosystem may fulfil criteria for becoming a novel system with profoundly
362	altered energy-pathways (Ammar et al., 2021). Below, recent findings regarding specifically climate
363	impacts on trophic structure and functioning on the Baltic Sea ecosystem are summarized.
364	
365	3.1. Climate change and primary production in the pelagial
366	
367	In the global ocean it has been projected that climate change will induce declining of primary
368	production because of intensified stratification and decreased availability of nutrients in the surface
369	layer (Ipcc, 2019). In the Baltic Sea, primary producers receive nutrients from several sources, both
370	via rivers and through several biogeochemical processes, and the system is more complex than in the
371	ocean.
372	Several studies using coupled oceanographic-biogeochemical and ecosystem models have
373	indeed projected more phytoplankton and especially cyanobacteria in the warmer and more stratified
374	future Baltic Sea. It has been projected for the central Baltic Sea that increased water temperature
375	causes, together with enhanced mixing and associated increase in nitrogen, an earlier spring bloom,
376	and in summer, more intense cyanobacteria blooms (Meier et al., 2011a; Andersson et al., 2015;
377	Neumann et al., 2012; Chust et al., 2014). Intensified blooms of cyanobacteria are expected especially
378	if hypoxia and internal loading of phosphorus will prevail and increase (Meier et al., 2011b; Funkey et
379	al., 2014).
380	There are also contrasting results. When pCO2 was experimentally increased, the production of
381	single-celled cyanobacterium Cyanothece increased, while that of Nodularia sp. decreased (Eichner et
382	al., 2014). Also, increase of temperature from 16 to 18-20 °C, led to an earlier peak of
383	cyanobacteria, while yields were reduced (Berner et al., 2018). In particular, the biomass of nitrogen-

384	fixer Dolichospermum sp. decreased. This suggests that there are species specific responses to climate
385	change and associated oceanographic parameters even within Cyanobacteria. If the biomasses of
386	Nodularia asp. and Dolichospermum decrease due to increased acidification, nitrogen input into the
387	Baltic Sea as well as carbon export to heterotrophic bacteria via cyanobacteria might decline (Eichner
388	et al., 2014; Berner et al., 2018).
389	
390	3.2. Nutrient recycling, benthic-pelagic coupling and trophic efficiency
391	
392	While the projected increase in nutrient loading will inevitably affect the pelagic and benthic
393	ecosystems, what eventually determines the productivity is the recycling of carbon and nutrients
394	within the system. Several studies suggest fundamental changes in recycling potential, carbon and
395	nutrient flows, and trophic interactions.
396	A climate and nutrient load driven model reconstruction of the Baltic Sea state from 1850 to
397	2006 suggest that the shift from spring to summer primary production is accompanied by an
398	intensification of pelagic recycling of organic matter (Gustafsson et al., 2012). In mesocosm studies
399	warming accelerated (southern Baltic Sea) phytoplankton spring bloom and increased carbon specific
400	primary productivity (Sommer and Lewandowska, 2011; Sommer et al., 2012; Paul et al., 2016). The
401	total phytoplankton biomass however decreased due to negative effects of warming on nutrient flux
402	(Lewandowska et al., 2014; Lewandowska et al., 2012).
403	It has also been projected that the flow of dissolved organic matter (DOM) into the northern
404	Baltic Sea increases in the future climate, especially in the northernmost Baltic Sea (Strååt et al.,
405	2018). By using long-term time series from 1994 to 2006, it was indeed shown that climate change
406	brought about increased riverine DOM, which increased the amount of substrate available for bacteria
407	(Wikner and Andersson, 2012). Also experimental studies have demonstrated increased microbial
408	activity and biomass with increasing DOM and temperature (Ducklow et al., 2010). Eventually
409	bacteria compete for nutrients with phytoplankton, and as the brownification of water also reduces
410	light availability, phytoplankton productivity and biomass may decrease. This shifts the carbon flow
411	towards microbial heterotrophy (Wikner and Andersson, 2012).
412	It has also been suggested that climate change may decrease fish productivity, especially in the
413	northernmost Baltic Sea, because when the system towards heterotrophy, the food web efficiency
414	declines, and eventually the fish production may decrease (Berglund et al., 2007; Wikner and
415	Andersson, 2012). In most areas, however, also heterotrophic production through the bacteria-
416	flagellates-ciliates chain may remain high, yielding a high number of copepods, the favourite food of
417	forage fishes (Lefebure et al., 2013), and the consequences of climate change associated changes in
418	trophic efficiency on fish productivity remain unsecure. There is also evidence that ocean warming
419	may lead to increased species turnover in coastal waters of the Baltic, impacting all trophic levels of
420	the system (Hillebrand et al., 2010).

421	For zoobenthos inhabiting soft bottoms, hydrodynamics, oxygen and availability of food are
422	crucial, and several modelling studies have estimated the relative effects of these factors for Baltic
423	Sea zoobenthos. A physiological fauna model linked to a 3D coupled hydrodynamic-ecological Baltic
424	Sea model projected that, in areas previously burdened by hypoxia, benthic biomass will increase
425	(until year 2100) by up to 200 % after re-oxygenating bottom waters, whereas in permanently
426	oxygenated areas the macrofauna biomass will decrease by 35 %, due to lowered food supply to the
427	benthic ecosystem (Timmermann et al., 2012). In another modelling study, zoobenthic production
428	decreased in the coastal zones, and gradually also in the more offshore areas, with increasing
429	temperature and declining salinity and bottom oxygen, regardless of the nutrient load scenarios
430	(Weigel et al., 2015). Warmer temperatures will induce stronger stratification and intensified
431	recycling, and zoobenthos decreases, due to reduced export of organic matter to the benthic ecosystem
432	(Ehrnsten et al., 2020). Large uncertainties in projections exist, however, especially due to difficulties
433	in projecting the future nutrient loads and salinities (Meier et al., 2019b; Saraiva et al., 2019).
434	
435	3.3. Complex food web responses in the microbial loop
436	
437	Experimental studies have also demonstrated that complex responses to climate change may also arise
438	from food web effects within the microbial loop.
439	In Kvarken, the northern Gulf of Bothnia, increase of DOM enhanced respiration and
440	abundance of bacteria, whereas an increase of temperature (from 12 to 15 $^{\circ}$ C) induced a decrease of
441	bacteria, probably due to an increase in bacterivorous flagellates (Nydahl et al., 2013). A complex
442	response to warming was also demonstrated for different size classes of heterotrophic flagellates
443	(HF). There was a succession from flagellates feeding on bacteria to omnivorous nanoflagellates
444	preying upon other HF. This intraguild predation pattern probably dampened the response to
445	experimental treatments (Moustaka-Gouni et al., 2016).
446	As for microzooplankton (MZP), the effects of OA and warming seem to be mostly beneficial.
447	OA does not have a negative effect on MZP, probably because estuarine MZP are adapted to a large
448	natural variability in pCO ₂ (Horn et al., 2016), and the abundance of the mixotrophic ciliate
449	Myrionecta rubra (Mesodinium rubrum) even increased in mesocosms with OA, because of increase
450	of its food, picoeukaryotes and Dinophyta at higher CO ₂ levels (Lischka et al., 2017). In addition,
451	warming improved the growth rate of MZP, and their biomass peaked earlier in warm mesocosm
452	treatments. This led to a reduced time-lag between MZP and phytoplankton peaks, inducing a better
453	food supply to microzooplankton in warm conditions (Horn et al., 2016). The same applied to the
454	MZP-copepod link: at low temperatures MZP escaped from predation by slower growing copepods,
455	whereas at higher temperatures especially small-sized ciliates were more strongly controlled by
456	copepod predation.

457	OA also promoted the growth of suspension-feeding cladocerans, because of a CO2-driven
458	increase of cyanobacteria (Lischka et al., 2017). Warming may also increase zooplankton grazing on
459	medium-sized algae, which contributes to a change towards smaller-sized phytoplankton species
460	(Klauschies et al., 2012; Paul et al., 2015).
461	In summary, climate change probably strengthens trophic pathways from phytoplankton and
462	flagellates through ciliates to copepods (Aberle et al., 2015). It has also been suggested, from
463	experimental (mesocosm) evidence, that warming induces a switch from a bottom-up controlled to a
464	mainly top-down controlled system, which may result in increased zooplankton abundance and
465	reduced phytoplankton biomass under warm temperature (Paul et al., 2016). Such results highlight the
466	importance of considering food web effects (both bottom-up and top-down) on microbial
467	communities under climate change.
468	
469	3.4. Food web interactions in the littoral ecosystem
470	
471	Climate change induced increase in nutrients is bound to affect the algae and vascular plants in the
472	shallow photic zone. The shallow water food webs based on macroalgae and seagrasses may also be
473	affected via the indirect effects of climate change, mediated through the interactions between the
474	algae and their grazers.
475	In mesocosm experiments mimicking coastal Fucus vesiculosus communities in late summer, a
476	heatwave-driven collapse of grazers resulted in overgrowth of Fucus by filamentous algae. In the
477	autumn and winter, instead, the process was reversed: warming resulted in more active invertebrates,
478	but the intensified grazing was directed towards the perennial Fucus spp. Again, a significant
479	reduction of Fucus biomass resulted (Werner et al., 2016). As for the microalgae (diatoms), growing
480	on Fucus in spring, temperature effects were stronger than grazing effects, suggesting a positive
481	overall effect of climate change on microalgae (Werner and Matthiessen, 2017).
482	Similar results were obtained in an artificially heated biotest basin (Forsmark nuclear power
483	plant) in the Gulf of Bothnia, the biomass of the non-native gastropod grazer Potamopyrgus,
484	gammarids and the snail Theodoxus was much higher than in non-heated conditions. The community
485	shift was mainly driven by direct temperature effects on invertebrates and by indirect effects of
486	changes in vegetation cover (Salo et al., 2020). Cascading effects are also possible. In the same biotest
487	basin, perch shifted from feeding on small fish to gammarid crustaceans, which released grazing
488	pressure from filamentous algae (Svensson et al., 2017).
489	If the same takes place in other sea areas of the Baltic Sea as well, warming may promote the
490	growth of filamentous algae and contribute to the decline of bladderwrack. Decline of the
491	bladderwrack habitats will affect other trophic levels in various ways, due to declining availability to
492	habitat, food conditions (Kotta et al., 2019; Takolander et al., 2017a; Jonsson et al., 2018) as well as
493	connectivity between bladderwrack populations as well as organisms inhabiting patches of

494	bladderwrack (Jonsson et al., 2020; Virtanen et al., 2020). These results suggest that both summer
495	heatwaves and cold season warming can induce eutrophication-like effects in the photic zone
496	dominated by macroalgae, even without an increase in nutrient loading, and without major changes in
497	salinity.
498	
499	3.5. Climate change and regime shifts
500	
501	In the 1980's a partly climate induced regime shift took place with drastic changes in the central
502	Baltic food web (Möllmann et al., 2009; Lindegren et al., 2010a). Later studies also confirmed that,
503	during that period declines in suitable habitat and 'reproductive volume' (where cod egg survival is
504	possible) contributed to the decline of cod population (Hinrichsen et al., 2011; Casini et al., 2016;
505	Bartolino et al., 2017), causing the earlier demonstrated (Casini et al., 2008) cascading effects on its
506	main prey, sprat and herring, as well as zooplankton. However, the overall food web complexity in
507	both the coastal and open central Baltic Sea has remained surprisingly stabile, in spite of significant
508	changes in both environmental drivers and individual populations, making overall conclusions
509	somewhat uncertain (Yletyinen et al., 2016).
510	The different effects of temperature and salinity on sprat and cod also resulted in a spatial
511	mismatch between these species, which contributed to the increase of sprat stocks (Reusch et al.,
512	2018). Transition to a lower saline Baltic Sea, and associated decline of marine copepods (Hänninen
513	et al., 2015), also induced a halving of (3-year old) herring weight-at-age, from 50-70 g in the late
514	1970s to 25-30 g in 2000s (Dippner et al., 2019). These studies have mostly considered the central
515	and southern Baltic fish stocks. In the Bothnian Bay, the northernmost basin of the Baltic Sea, salinity
516	was the major driver for herring as well, but the species involved were different. Here the decline of
517	spawning-stock biomass observed in 1980-2013 was explained by a simultaneously increased
518	competition for food with vendace, a limnic species that had increased with lowering salinity (Pekcan-
519	Hekim et al., 2016).
520	Recent awareness of marine heatwaves and their potential impact on the ecosystem has also
521	increased our knowledge on how short-term pulses in temperature, as a result of overall warming,
522	may impact littoral, benthic and pelagic communities, indicating that there are numerous levels of
523	ecosystem-responses yet to be explored (Pansch et al., 2018; Saha et al., 2020).
524	Multi-species modelling studies have also investigated the factors affecting the populations of
525	cod, herring and sprat under climate change. It was concluded that both fishing and climate strongly
526	affects the size of cod stocks. If fishing is intense but climate remains unchanged, cod declines, but
527	not very dramatically, while if climate changes as projected, cod goes extinct in two models out of
528	seven, even with present low fishing effort (Gårdmark et al., 2013).
529	Different scenarios may yield very different outcomes, however. Medium CO2 concentrations
530	(RCP4.5), low nutrients and sustainable fisheries resulted in high biodiversity and high numbers of

566

17

531	cod and flounder, while high emissions (RCP8.5) and high nutrient loads resulted in diminished
532	biodiversity and high abundance of lower value fish, especially sprat (Bauer et al., 2018; Bauer et al.,
533	2019; Hyytiäinen et al., 2019).
534	
535	4. Knowledge gaps
536	
537	There are a number of major knowledge gaps in the present literature. First, despite more than two
538	decades of 3D modelling, there are still large uncertainties in projecting the future salinity level as
539	well as stratification under different climate forcings. This weakens our ability to project all the main
540	changes anticipated, from pelagic productivity and benthic-pelagic coupling to fish populations and
541	geographic shifts in macroalgal communities in the photic zone.
542	Furthermore, regime shifts mostly looked at through food web changes in the central Baltic
543	Sea, using the cod-sprat-herring-zooplankton trophic links as an example. Only recently have the
544	experimental and mesocosm studies on the dynamics of the lower trophic levels, i.e., bacteria,
545	flagellates and microzooplankton started to shed light on the complex dynamics of the microbial loop
546	under different scenarios of DOM, temperature and OA. The conclusions from the experimental work
547	should be integrated into the wider empirical studies of food web dynamics, to get a more
548	comprehensive view of the responses of the pelagic and benthic systems to climate change, from
549	bacteria to fish (Kortsch et al., 2021).
550	While experimental studies on macroalgal communities are many, few studies have
551	investigated the shallow water ecosystems holistically, including macroalgae, filamentous algae, and
552	their grazers and fish at the same time. Those that have, have revealed complex interactions and
553	multiple feedbacks between algae, grazers and their predators.
554	Furthermore, the coupled oceanographic-biogeochemical modelling studies typically study the
555	whole Baltic Sea and often have a horizontal resolution at the scale of 4 km. In contrast the models
556	used to project present or future species distributions are done in 2D, and at much higher resolution,
557	up to 40 m (Jonsson et al., 2018; Kotta et al., 2019; Virtanen et al., 2018b). Both modelling types
558	would benefit from integration. Species distribution models could be parametrized with 3D model
559	results, if they were made more locally, and at higher spatial resolution, whereas the 3D models could
560	benefit from high resolution distribution modelling of benthic communities.
561	
562	5. Conclusions
563	
564	With escalating environmental change caused by climate-driven and associated factors, the entire
565	marine food webs, from coastal to off-shore, from shallow to deep, from pelagic to benthic

(sedimentary) are expected to change as species-distributions are impacted, and key nodes and

18

567 linkages in the food webs may be altered or lost (Lindegren et al., 2010b; Niiranen et al., 2013; 568 Leidenberger et al., 2015; Griffiths et al., 2017; Kotta et al., 2019; Gårdmark and Huss, 2020). 569 The direct and indirect effects of climate change-related parameters on species, communities 570 and the ecosystem are summarized in Table 1. 571 Climate change induces multiple direct and indirect effects on species and communities and 572 affects nutrient and carbon dynamics of the Baltic Sea ecosystem in the pelagial, deep sea benthos, as 573 well as the photic zone close to the shores. The responses vary from species group to another, and 574 within groups, even between sibling species. While responses of individual species to single 575 parameters may be straightforward, but when more complex systems with several parameters and 576 multiple species or trophic levels are studied, the system responses of the system become difficult to 577 foresee. Species-specific response, many feedbacks, and altered trophic pathways, make projections 578 concerning the state of the ecosystem and trophic effects difficult. 579 The consequences of climate change are difficult to predict, also because research into the long-580 term dynamics of food webs is still scarce (Kortsch et al., 2021; Pecuchet et al., 2020; Törnroos et al., 581 2019). Some common patterns arise from the wealth of recent studies, however. It is probable that the 582 combined effects of increased nutrient loads, increased stratification and increased internal loading 583 will improve the conditions for cyanobacterial blooms in the central basins, as well as the Gulf of 584 Finland. In the northernmost areas - Kvarken and the Bothnian Bay - the increasing allochtonous 585 DOM may complicate the picture by increasing heterotrophy and by decreasing food web efficiency. 586 This effect may however be counteracted by the intensification of the reduction of time lags between 587 bacteria, phytoplankton, microzooplankton, suspension feeding cladocerans and microzooplankton-588 eating copepods, which may change the system from a bottom-up controlled one to top-down

589 controlled one.

As for the deep benthic communities, increase of nutrients may first promote more sedimentation of organic matter and higher zoobenthos biomasses, but eventually, increasing stratification will weaken benthic-pelagic coupling, resulting in a decreasing benthic biomass. In the photic benthic systems, in turn, nutrient increase probably enhances eutrophication, and, as salinity decline suppresses marine species such as bladderwrack, and as temperature increase also indirectly favours overgrowth of macroalgae by filamentous algae in summer, major changes in the communities dominated by brown algae can be expected.

Naturally, climate change is not the only factor determining the fate of the Baltic Sea in the
future. Several modelling studies have concluded that nutrient reductions according to HELCOM
BSAP will be a stronger driver for ecosystem functions in the Baltic Sea than climate change
(Ehrnsten et al., 2019b; Friedland et al., 2012; Niiranen et al., 2013; Pihlainen et al., 2020). In
moderate nutrient loading scenarios also climate change will play a role, but under full
implementation of BSAP, the environmental state of the Baltic Sea will be significantly improved by

the end of the century (Meier et al., 2018; Saraiva et al., 2018, 2019). This also means that extreme

19

604 cyanobacteria blooms will no longer occur, despite the proceeding climate change (Meier et al., 605 2019a). 606 These studies further highlight the importance of studying the Baltic Sea as a socio-ecological 607 system, responding to both environmental and societal changes (Bauer et al., 2018; Bauer et al., 2019; 608 Hyytiäinen et al., 2019), and it is important to continue efforts combining long-term monitoring, 609 experimental studies, modelling and dialogue with human society in order to attune to the changes 610 ultimately driven by the Ocean itself (Stenseth et al., 2020). 611 612 Author contributions. MV prepared the manuscript with contributions from EB. 613 614 **Competing interests.** The authors declare that they have no conflict of interest. 615 616 Acknowledgements. The authors thank Markus Meier for inviting us to write this review in close 617 collaboration with the team behind the overview of physical climate change scenarios. The work of 618 MV has been financed by the SmartSea project (Academy of Finland, Strategic Research Council, grant numbers 292985 and 314225). The Åbo Akademi Foundation is thanked for financial support 619 620 for EB, and this contribution is part of the Åbo Akademi University Strategic Profile The Sea (EB). 621

- Table 1. Summary of research findings and conclusions on the anticipated effects of climate change
- 623 (CC) effects in the Baltic Sea. The table only includes studies published in 2011-2021. For earlier
- 624 studies, see Dippner et al. (2008) and Viitasalo et al. (2015). Observations, experimental simulations
- 625 or modelled projections: T = temperature increase; S = salinity decline; TSO = temperature increase
- 626 with salinity decline, also with oxygen decline; $OA = CO_2$ increase; $OAW = CO_2$ and temperature
- 627 increase; EXP = experimental manipulations /microcosms; MES = experimental manipulations
- 628 /mesocosms; LTS = Long-term studies; MOD = modelling studies; FIE = Field data.
- 629

Taxonomic group	T	S	TSO	OA	OAW & OAS	Changes in physico- chemical environmen t	Interactions between trophic levels
Bacterial and microbial communit- ies, including microzoo- plankton	EXP: Community change ¹ ; MES: Growth rate of microzoo- plankton increased ⁹⁴	EXP: Drastic change in bacterial communities 2	EXP: Mixed responses; TS change in microbial community ²	EXP: Limited impact ^{1,3} ; MES: No effect on microzoo- plankton ⁹⁴	EXP; Biovolume of bacterial communities decline with OAS ² ; EXP: Community change with OAW ³		BC increase caused by decaying cyano- bacteria ⁴ ; EXP: T increase induced a decline in bacteria, due to increase of bacteri- vorous flagellates ⁹³ ; MES: Positive effect on ciliate <i>Myrionecta</i> due to increase in food avilability ⁹⁵
Phyto- plankton	LTS: Prolonged growing season ^{5,6} . Earlier and longer spring bloom ⁶⁻⁸		LTS: Eutrophicat- ion effects modified by climate- induced variations in temperature and salinity ^{11,16} and by Baltic Sea Index ¹⁷	MES: Autumn phyto- plankton biomass increased ²³ EXP: No/minor effects on community composition, fatty acids or biovolumes of phytoplankt on ²⁴⁻²⁶	MES: Autumn phyto- plankton biomass increase with OAW 23	LTS: Shift from diatoms to dino- flagellates due to changes in sunshine, wind and ice conditions ⁹⁻ ¹³ ; MOD: Increased phyto- plankton biomass caused by increase in nutrient	EXP: OAW effects modified by associated diminishing of grazing by copepods 27; MES: Warming increases zooplankton grazing on medium- sized algae which releases smaller

					availability 18-21	algae from predation ²⁴
					MOD: CC and nutrient	
					reduction lead to a	
					shift from	
					pelagic to	
					primary	
0		1 770		EVD	production 22	1 770 01 10
Cyano- bacteria	EXP: Earlier peak but	community		EXP: Production	MOD: Cyano-	to cyano-
and toxic	lower	change		of single-	bacteria	bacteria
dino- flagellates	biomass of cvano-	caused by S decline in		celled cvano-	blooms increase ⁹⁷⁻	dominance also
8	bacteria ⁴ ;	the Gulf of		bacterium	102	attributed to
	LT: Increase	Bothnia ¹⁵ ;		Cyanothece		changes in
	bacteria	Toxicity of		and that of		ion and top-
	blooms in	cyanobacteri		filamentous		down
	EXP:	um Dolichosper		sp.		pressure
	Toxicity of	mum sp.		decreases		
	cyano- bacterium	increases 29		EXP.		
	Dolicho-			Decline of		
	<i>spermum</i> sp.			nitrogen-		
	²⁹ .			cyano-		
	EXP:			bacteria may		
	Toxicity of dino-			induce a decline of		
	flagellate			nitrogen		
	Alexandrium			input into		
	increases 30			Sea ^{4, 103}		
Mesozoo-	EXP:		LTS:	MES:		MOD:
plankton	Decrease in copenod egg		Decline of marine	Decline in body size of		Surface- dwelling
	viability and		copepods	adult		copepods
	nauplii		due to	copepods 35;		are favoured
	³³ .		induced			by 1- induced
	Decrease in		decline in S			increase in
	copepod adult body		^{14, 30} ;			food
	size and		Increase of			³² ;
	survival ³³⁻³⁴		brackish			MES: At
	communities		due to			copepods
	dominated		decline in S			control their
	by cladocerans		and increase in T ³¹			micro- zooplankton
	and rotifers					prey ⁹⁴ ;
	36					MES: OA
						growth of
						cladocerans
						possibly

Macroalgae	EXP: At heat wave temperat- ures photo-	EXP: Sexual reproduction of bladder- wrack	EXP: Generally small effects on	EXP: OA- induced necrosis in bladder-		because of a CO ₂ -driven increase in food availability ⁹⁵ ; MES: Warming strengthens the microbial loop ⁹⁶ and induces a switch from bottom-up to top-down controlled system ²⁷ MES: In spring, T increase induces
	synthesis declines, growth ceases and necrosis starts in bladder- wrack ³⁷⁻³⁸	ceases ³⁹⁻⁴⁰ MOD: Bladder- wrack distribution will be restricted in the Baltic Sea ⁴⁴⁻⁴⁷ ; MOD: Red alga <i>Furcellaria</i> distribution will be restricted in the Baltic Sea ⁵¹	macroalgae 41-42 EXP: Increase in growth of green alga <i>Ulva</i> <i>intestinalis</i> 48-49	wrack is worsened in low salinity ³⁸ ; EXP: Upwelling of hypoxic water causes mortality of bladder- wrack germlings under OAW conditions ⁴³		overgrowth of bladder- wrack by epiphytic diatoms ⁸⁴ ; In summer, a heatwave- driven collapse of grazers results in overgrowth of bladder- wrack by filametous algae; in winter, warming enhances grazing by invertebr- ates, resulting in decline of bladder- wrack biomass ⁸⁵
Vascular plants	MOD: Charophyte distribution increases ⁵¹	MOD: Eelgrass distribution will be restricted in the Baltic Sea ⁵¹	EXP: No effect on eelgrass Zostera marina ⁵⁰		MOD: Eelgrass distribution will be retained if nutrient abatement is implement- ed, despite CC effects ⁵²	

Benthic	EXP: Non-	LTS:	LTS: Long-	EXP:		MOD:	MOD:
animals	linear	Salinity	term	Develop-		Climate-	Abundance
	response to	decline	changes in	ment of		induced	of isopod
	T in isopod	affected	physico-	Baltic clam		changes in	Idothea
	Idothea	zoobenthos	chemical	larvae slows		physical and	<i>baltica</i> will
	balthica ⁵⁵ ;	variations in	parameters	down ⁶⁵ ;		biogeo-	decline due
	EXP: Heat	Aland	drive the	EXP: No		chemical	to salinity-
	waves	Islands 55	variations in	effects on		parameters	induced
	induce a		zoobenthos	barnacle		will modify	decline in
	shift in		50-00,	larvae ⁶⁴ ;		the response	bladder-
	community		LTS:	EXP: No		of	wrack ⁷⁰
	structure ^{34,}		Replace-	effects on		zoobenthos	
	FIE: T		ment of	isopod		to	
	increase		amphipods	Saduria		availability	
	induces a		by Baltic	entomon ⁰³ ;		of food and	
	higher		clam and	EXP: No		oxygen 07-09	
	biomass		Marenzell-	effects on			
	organinariu		eria sp.	Isopou			
	8 and shans		explained by	halthiag in			
			T S and O	Kattegat 66			
			61.	hut			
			, EXP	strong			
			Survival of	effects in the			
			isonod	Baltic Sea ⁶⁶			
			Idothea	Duitic Sea			
			Baltica				
			decreases 62				
Non-	FIE: T		FIE: NIS				
indigenous	increase		establish in				
invertebrat	induced		areas with				
es	higher		high T and				
	biomass of		low S ⁷¹ ;				
	gastropod		MOD:				
	Potamo-		Projected				
	pyrgus ⁸⁶		increase of				
			Ponto-				
			Caspian				
			bivalves,				
			amphipods				
			and mysids				
			in the				
			coastal				
			areas 72				
Fish	I TS: Sprat	I T. Salinty	MOD.	FXP No	EXP: No		MOD
1 1511	has	decline and	Climate	effect on	effect on		Abiotic and
	benefited	associated	effects most	cod larvae	cod larvae		biotic
	from	decline of	obvious on a	⁷⁹ .	with OAW		interactions
	increasing T	marine	multidecadal	EXP:	79		are mixed 61:
	73-75,	copepods	scale, across	Mortality of			MOD:
	LTS: Warm	induced a	a large	cod larvae			Climate-
	water	halving of	spatial scale	doubles			induced
	Atlantic	herring	61,	when treated			decoupling
	species (e.g.	weight-at-	MOD: Cod	with RCP8.5			of benthic
	anchovy,	age ⁸⁸ ;	reproductive	scenarios 80			feeding fish
	sole and	LTS/MOD:	volume				from their
	turbot) occur	Different	diminishes				food source
	in the	effcets of T	towards the				⁶¹ ;
		and S on					

	western	sprat and	end of the		MOD:
	Baltic 76-77;	cod caused a	century 81-82		Herring
	MOD: Sprat	spatial			stocks
	productivity	mismatch			decrease in
	will increase	between			short term 81;
	with	these species			FIE: Perch
	increasing	⁷⁶ ;			shift from
	temperatures	LTS:			feeding on
	73-74,64;	Decline in S			small fish to
	MOD:	increased			gammarid
	Herring	resource			crustaceans,
	stocks will	competition			which
	increase ⁸³ ;	between			releases
	LTS: Pike-	herring and			grazing from
	perch more	vendace in			filamentous
	abundant in	the Bothnian			algae ⁸⁷ ;
	the northern-	Bay ⁹²			LTS/MOD:
	most Baltic				Partly
	Sea ⁷⁸				climate
					induced
					decline in
					cod stock
					caused a
					cascading
					effect on
					sprat,
					herring and
					zooplankton 89-91

630

631 632 ¹Bergen et al. 2016; ²Wulff et al. 2018; ³Lindh et al. 2013; ⁴Berner et al. 2018; ⁵Kahru et al. 2016; ⁶ Wasmund et al. 2019; ⁷ Sommer et al. 2012; ⁸ Groetsch et al. 2016; ⁹ Klais et al. 2011; ¹⁰ Klais et al. 633 634 2013; ¹¹ Hällfors et al. 2013; ¹² Kuosa et al. 2017; ¹³ Hjerne et al. 2019; ¹⁴ Suikkanen et al. 2013; ¹⁵ Kuosa et al. 2017; ¹⁶ Olofsson et al. 2020; ¹⁷ Griffiths et al. 2020; ¹⁸ Meier et al. 2012a; ¹⁹ Meier et al. 635 2012b; ²⁰ Skogen et al. 2014; ²¹ Ryabchenko et al. 2016; ²² Lindegren et al. 2012; ²³ Sommer et al. 636 2015; ²⁴ Paul et al. 2015; ²⁵ Bermudez et al. 2016; ²⁶ Olofsson et al. 2019; ²⁷ Paul et al. 2016; ²⁸ 637 Brutemark et al. 2015; ²⁹ Wulff et al. 2018; ³⁰ Hänninen et al. 2015; ³¹ Mäkinen et al. 2017; ³² Otto et 638 al.2014a; ³³ Vehmaa et al. 2013; ³⁴ Garzke et al. 2015; ³⁵ Vehmaa et al. 2016; ³⁶ Jansson et al. 2020; ³⁷ 639 Graiff et al. 2017; ³⁸ Takolander et al. 2017b; ³⁹ Rothäusler et al. 2018; ⁴⁰ Rothäusler et al. 2019; ⁴¹ Al-640 Janabi et al. 2016a; ⁴² Wahl et al. 2019; ⁴³ Al-Janabi et al. 2016b; ⁴⁴ Vuorinen et al. 2015; ⁴⁵ Takolander 641 et al. 2017a; ⁴⁶ Jonsson et al. 2018; ⁴⁷ Kotta et al. 2019; ⁴⁸ Pajusalu et al. 2013; ⁴⁹ Pajusalu et al. 2016; 642 ⁵⁰ Pajusalu et al. 2015; ⁵¹ Torn et al. 2020; ⁵² Bobsien et al. 2021; ⁵³ Ito et al. 2019; ⁵⁴ Pansch et al. 643 2018; ⁵⁵ Snickars et al. 2015; ⁵⁶ Weigel et al. 2015; ⁵⁷ Rousi et al. 2019; ⁵⁸ Ehrnsten et al. 2020; ⁵⁹ 644 Törnroos et al. 2019; ⁶⁰ Forsblom et al. 2021; ⁶¹ Rousi et al. 2013; ⁶² Rugiu et al. 2018c; ⁶³ Jansson et 645 167nroos et al. 2019; ⁶⁶ Forsblom et al. 2021; ⁶⁷ Rousi et al. 2013; ⁶² Rugiu et al. 2018c; ⁶⁵ Jansson et al. 2016; ⁶⁴ Pansch et al. 2012; ⁶⁵ Jakubowska et al. 2013; ⁶⁶ Wood et al. 2014; ⁶⁷ Timmermann et al. 2012; ⁶⁸ Ehrnsten et al. 2019a; ⁶⁹ Ehrnsten et al. 2019b; ⁷⁰ Kotta et al. 2019; ⁷¹ Jänes et al. 2017; ⁷² Holopainen et al. 2016; ⁷³ Voss et al. 2011; ⁷⁴ MacKenzie et al. 2012; ⁷⁵ Eero et al. 2016; ⁷⁶ Reusch et al. 2018; ⁷⁷ Sparrevohn et al. 2013; ⁷⁸ Peckan-Hekim et al. 2011; ⁷⁹ Frommel et al. 2013; ⁸⁰ Stiasny et al. 2016; ⁸¹ Niiranen et al. 2013; ⁸² Wählström et al.; ⁸³ Bartolino et al. 2014; ⁸⁴ Werner & Mathiessen 646 647 648 649 650 2017; ⁸⁵ Werner et al. 2016; ⁸⁶ Salo et al. 2020; ⁸⁷ Svensson et al. 2017; ⁸⁸ Dippner et al. 2019; ⁸⁹ 651 Hinrichsen et al. 2011; ⁹⁰ Casini et al. 2016; ⁹¹ Bartolino et al. 2017; ⁹² Peckan-Heekim et al. 2016; ⁹³ 652 Nydahl et al. 2013; ⁹⁴ Horn et al. 2016; ⁹⁵ Lischka et al. 2017; ⁹⁶ Aberle et al. 2015; ⁹⁷ Meier et al 653 2011a, ⁹⁸ Meier et al. 2011b; ⁹⁹ Neumann et al. 2012; ¹⁰⁰ Chust et al. 2014; ¹⁰¹ Funkey et al. 2014; ¹⁰² 654 655 Andersson et al 2015; ¹⁰³ Eichner et al. 2014. 656

25

657 F	References
-------	------------

659	Aberle, N., Malzahn, A. M., Lewandowska, A. M., and Sommer, U.: Some like it hot: the
660	protozooplankton-copepod link in a warming ocean, Marine Ecology Progress Series,
661	519, 103-113, 10.3354/meps11081, 2015.
662	Al-Janabi, B., Kruse, I., Graiff, A., Karsten, U., and Wahl, M.: Genotypic variation
663	influences tolerance to warming and acidification of early life-stage <i>Fucus vesiculosus</i> L.
664	(Phaeophyceae) in a seasonally fluctuating environment, Marine Biology, 163, 14,
665	10.100//s00227-015-2804-8, 2016a.
666	Al-Janabi, B., Kruse, I., Graiff, A., Winde, V., Lenz, M., and Wahl, M.: Buffering and
667	amplifying interactions among OAW (Ocean Acidification & Warming) and nutrient
668	enrichment on early life-stage <i>Fucus vesiculosus</i> L. (Phaeophyceae) and their carry over
669	effects to hypoxia impact, Plos One, 11, 10.13/1/journal.pone.0152948, 2016b.
670	Ammar, Y., Niiranen, S., Otto, S. A., Mollmann, C., Finsinger, W., and Blenckner, T.: The
671	rise of novelty in marine ecosystems: The Baltic Sea case, Global Change Biology, 27,
672	1485-1499, 10.1111/gcb.15503, 2021.
6/3	Andersson, A., Meier, H. E. M., Ripszam, M., Rowe, O., Wikner, J., Haglund, P., Eilola, K.,
6/4	Legrand, C., Figueroa, D., Paczkowska, J., Lindehoff, E., Tysklind, M., and Elmgren, K.:
6/5	Projected future climate change and Baltic Sea ecosystem management, Ambio, 44,
0/0 677	S343-S350, 10.1007/S13280-013-0054-8, 2015.
679	Daney, S. A., Brown, L., Campbell, M. L., Canning-Cloue, J., Carnon, J. I., Castro, N., Chainba, D., Chan, F. T., Craad, I. C., Curd, A., Darling, I., Eafonoff, D., Calil, P. S.
670	Hewitt C I Inglis G I Keith I Mandrak N E Marchini A McKenzie C H
680	Occhininti-Ambrogi A Oisveer H Pires-Teiveira I M Rohinson T B Ruiz G
681	M Seaward K Schwindt F Son M O Therriault T W and Zhan A B Trends in
682	the detection of aquatic non-indigenous species across global marine, estuarine and
683	freshwater ecosystems: A 50-year perspective. Diversity and Distributions, 26, 1780-
684	1797. 10.1111/ddi.13167. 2020.
685	Bartolino, V., Margonski, P., Lindegren, M., Linderholm, H. W., Cardinale, M., Rayner, D.,
686	Wennhage, H., and Casini, M.: Forecasting fish stock dynamics under climate change:
687	Baltic herring (Clupea harengus) as a case study, Fisheries Oceanography, 23, 258-269,
688	10.1111/fog.12060, 2014.
689	Bartolino, V., Tian, H. D., Bergström, U., Jounela, P., Aro, E., Dieterich, C., Meier, H. E. M.,
690	Cardinale, M., Bland, B., and Casini, M.: Spatio-temporal dynamics of a fish predator:
691	Density-dependent and hydrographic effects on Baltic Sea cod population, Plos One, 12,
692	10.1371/journal.pone.0172004, 2017.
693	Bauer, B., Gustafsson, B. G., Hyytiäinen, K., Meier, H. E. M., Müller-Karulis, B., Saraiva,
694	S., and Tomczak, M. T.: Food web and fisheries in the future Baltic Sea, Ambio, 48,
695	1337-1349, 10.1007/s13280-019-01229-3, 2019.
696	Bauer, B., Meier, H. E. M., Casini, M., Hoff, A., Margonski, P., Orio, A., Saraiva, S.,
697	Steenbeek, J., and Tomczak, M. T.: Reducing eutrophication increases spatial extent of
698	communities supporting commercial fisheries: a model case study, Ices Journal of
699	Marine Science, 75, 1306-1317, 10.1093/icesjms/fsy003, 2018.
700	Bergen, B., Endres, S., Engel, A., Zark, M., Dittmar, T., Sommer, U., and Jürgens, K.:
/01	Acidification and warming affect prominent bacteria in two seasonal phytoplankton
702	bloom mesocosms, Environmental Microbiology, 18, 4579-4595, 10.1111/1462-
/03	2920.13549, 2016.

704 705 706	Berglund, J., Müren, U., Båmstedt, U., and Andersson, A.: Efficiency of a phytoplankton- based and a bacteria-based food web in a pelagic marine system, Limnology and Oceanography 52, 121-131, 10,4319/lo 2007, 52,1,0121, 2007
707	Bergstrom I. Heikinheimo O. Svirgsden R. Kruze F. Lozys I. Lannalainen A. Saks
707	I Minda A Dainya I Jakubayiajuta E Adjars K and Olsson I: Long term
708	L., Millit, A., Dallys, J., Jakubaviciule, E., Aujers, K., and Oisson, J., Long term
709	Science 160, 74, 84, 10 1016/j acce 2015 12 012, 2016
710	Science, 109, 74-84, 10.1010/J.ecss.2015.12.015, 2010.
/11	Bermudez, R., winder, M., Stunr, A., Almen, A. K., Engstrom-Ost, J., and Riebesell, U.:
/12	Effect of ocean acidification on the structure and fatty acid composition of a natural
713	plankton community in the Baltic Sea, Biogeosciences, 13, 6625-6635, 10.5194/bg-13-
/14	6625-2016, 2016.
715	Berner, C., Bertos-Fortis, M., Pinhassi, J., and Legrand, C.: Response of microbial
716	communities to changing climate conditions during summer cyanobacterial blooms in the
717	Baltic Sea, Frontiers in Microbiology, 9, 10.3389/fmicb.2018.01562, 2018.
718	Blenckner, T., Möllman, C., Stewart Lowndes, J., Griffiths, J., Campbell, E., De Cervo, A.,
719	Belgrano, A., Boström, C., Fleming, V., Frazier, M., Neuenfeldt, A., Niiranen, S.,
720	Nilsson, A., Ojaveer, H., Olsson, j., Palmlöv, C. S., Quaas, M., Rickels, W., Sobek, A.,
721	Viitasalo, M., Wikström, S. A., and Halpern, B. S.: The Baltic Health Index (BHI):
722	assessing the socialecological status of the Baltic Sea, People and Nature, 3, 359-375,
723	https://doi.org/10.1002/pan3.10178, 2021.
724	Blindow, I., Dahlke, S., Dewart, A., Flugge, S., Hendreschke, M., Kerkow, A., and Meyer, J.:
725	Long-term and interannual changes of submerged macrophytes and their associated
726	diaspore reservoir in a shallow southern Baltic Sea bay: influence of eutrophication and
727	climate, Hydrobiologia, 778, 121-136, 10.1007/s10750-016-2655-4, 2016.
728	Bobsien, I. C., Hukriede, W., Schlamkow, C., Friedland, R., Dreier, N., Schubert, P. R.,
729	Karez, R., and Reusch, T. B. H.: Modeling eelgrass spatial response to nutrient
730	abatement measures in a changing climate, Ambio, 50, 400-412, 10.1007/s13280-020-
731	01364-2, 2021.
732	Bonsdorff, E.: Eutrophication: Early warning signals, ecosystem-level and societal responses,
733	and ways forward, Ambio, 50, 753-758, 10.1007/s13280-020-01432-7, 2021.
734	Brutemark, A., Engström-Öst, J., Vehmaa, A., and Gorokhova, E.: Growth, toxicity and
735	oxidative stress of a cultured cyanobacterium (Dolichospermum sp.) under different
736	CO2/pH and temperature conditions, Phycol. Res., 63, 56-63, 10.1111/pre.12075, 2015.
737	Cardinale, M. and Svedäng, H.: The beauty of simplicity in science: Baltic cod stock
738	improves rapidly in a 'cod hostile' ecosystem state, Marine Ecology Progress Series, 425,
739	297-301, 10.3354/meps09098, 2011.
740	Casini, M., Lövgren, J., Hjelm, J., Cardinale, M., Molinero, J. C., and Kornilovs, G.: Multi-
741	level trophic cascades in a heavily exploited open marine ecosystem, Proceedings of the
742	Royal Society B-Biological Sciences, 275, 1793-1801, 10.1098/rspb.2007.1752, 2008.
743	Casini, M., Kall, F., Hansson, M., Plikshs, M., Baranova, T., Karlsson, O., Lundström, K.,
744	Neuenfeldt, S., Gårdmark, A., and Hjelm, J.: Hypoxic areas, density-dependence and
745	food limitation drive the body condition of a heavily exploited marine fish predator,
746	Royal Society Open Science, 3, 15, 10.1098/rsos.160416, 2016.
747	Chen, D. L.: Impact of climate change on sensitive marine and extreme terrestrial
748	ecosystems: Recent progresses and future challenges This article belongs to Ambio's
749	50th Anniversary Collection. Theme: Climate change impact, Ambio, 50, 1141-1144,
750	10.1007/s13280-020-01446-1, 2021.
751	Chust, G., Allen, J. I., Bopp, L., Schrum, C., Holt, J., Tsiaras, K., Zavatarelli, M., Chifflet,
752	M., Cannaby, H., Dadou, I., Daewel, U., Wakelin, S. L., Machu, E., Pushpadas, D.,
753	Butenschon, M., Artioli, Y., Petihakis, G., Smith, C., Garcon, V., Goubanova, K., Le Vu,

751	D. Each D. A. Salihaaly, D. Clamanti E. and Inization, V. Diamass shareas and
754	B., Fach, B. A., Salinogiu, B., Clementi, E., and Ingolen, A.: Biolinass changes and traphic amplification of plankton in a warmar occord. Clobal Change Biology 20, 2124
755	2120 10 1111/geb 12562 2014
750	Conley D. J. Constanting J. Aigans, J. Ava D. Donadorff E. Eramina, T. Haahti, D. M.
759	United D. J., Calstensen, J., Algais, J., Axe, F., Bollsdolli, E., Elennia, I., Hadilu, D. M.,
750	Humborg, C., Jonsson, P., Kotta, J., Lannegren, C., Larsson, U., Maximov, A., Medina,
759	M. K., Lystak-Pastuszak, E., Remeikaite-Nikiene, N., waive, J., wilneims, S., and Zillen, L., Hymoxic I., Increasing in the Coastal Zone of the Daltic Sec. Environmental
700	Science & Technology 45, 6777 6782, 10 1021/ac201212r, 2011
761	Diamar I. W. Frundt P. and Hommar C. I. Jaka ar saa? The unknown future of control
762	Dipplier, J. W., Fluidi, D., and Hammer, C., Lake of sea? The unknown future of central Paltia Saa barring, Eventiare in Eaplagy and Evolution, 7, 10,2280/favo 2010,00142
764	Data bea herring, Frontiers in Ecology and Evolution, $7, 10.5589/100.2019.00145,$ 2010
765	Ducklow H W Morán X A G and Murray A E Bacteria in the greenhouse: marine
766	microbes and climate change in: Environmental Microbiology edited by: Mitchell R
767	and Gu L.D. Wiley-Blackwell Hoboken New Jersey 1-31 2010
768	Fero M Andersson H C Almroth-Rosell F and MacKenzie B R : Has eutrophication
769	promoted forage fish production in the Baltic Sea? Ambio 45, 649-660
770	10 1007/s13280-016-0788-3, 2016
771	Eero M Dierking I Humborg C Undeman E MacKenzie B R Oiaveer H Salo T
772	and Köster. F. W.: Use of food web knowledge in environmental conservation and
773	management of living resources in the Baltic Sea. ICES Journal of Marine Science.
774	https://doi.org/10.1093/icesims/fsab145.2021.
775	Ehrnsten, E.: Quantifying biomass and carbon processing of benthic fauna in a coastal sea-
776	past, present and future, Dissertationes Schola Doctoralis Scientiae Circumiectalis,
777	Alimentariae, Biologicae, 1-64, 2020.
778	Ehrnsten, E., Norkko, A., Timmermann, K., and Gustafsson, B. G.: Benthic-pelagic coupling
779	in coastal seas-Modelling macrofaunal biomass and carbon processing in response to
780	organic matter supply, Journal of Marine Systems, 196, 36-47, 2019a.
781	Ehrnsten, E., Norkko, A., Müller-Karulis, B., Gustafsson, E., and Gustafsson, B. G.: The
782	meagre future of benthic fauna in a coastal sea-Benthic responses to recovery from
783	eutrophication in a changing climate, Global Change Biology, 26, 2235-2250,
784	10.1111/gcb.15014, 2020.
785	Ehrnsten, E. S., Bauer, B., and Gustafsson, B. G.: Combined effects of environmental drivers
786	on marine trophic groups-a systematic model comparison, Frontiers in Marine Science,
787	6, 492, 2019b.
788	Eichner, M., Rost, B., and Kranz, S. A.: Diversity of ocean acidification effects on marine N-
789	2 fixers, Journal of Experimental Marine Biology and Ecology, 457, 199-207,
790	10.1016/j.jembe.2014.04.015, 2014.
791	Forsblom, L., Linden, A., Engström-Ost, J., Lehtiniemi, M., and Bonsdorff, E.: Identifying
792	biotic drivers of population dynamics in a benthic-pelagic community, Ecology and
793	Evolution, 11, 4035-4045, 10.1002/ece3.7298, 2021.
794	Friedland, R., Neumann, T., and Schernewski, G.: Climate change and the Baltic Sea action
795 706	plan: Model simulations on the future of the western Baltic Sea, Journal of Marine
790	Systems, 105, 175-180, 10.1010/J.Jmarsys.2012.08.002, 2012.
709	Frommer, A. F., Schubert, A., Platkowski, U., and Clemmesen, C.: Egg and early larval
798	Marina Biology 160, 1825, 1824, 10, 1007/c00227, 011, 1876, 2, 2012
177 800	Fundav C D Conlay D I Bauss N S Humbors C lithert T and Slown C D \cdot
801	Hypoxia sustains Cyanobacteria blooms in the Baltic Sea Environmental Science &
802	Technology 48 2598-2602 10 1021/es404395a 2014
	100mologj, 10, 2000 2002, 10.1021/001010/004, 2011.

803 804	Garzke, J., Ismar, S. M. H., and Sommer, U.: Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance, Oecologia, 177, 849-860, 10.1007/-00442-014-2120-4-2015
80 <i>5</i>	10.1007/500442-014-5150-4, 2015.
800	Grann, A., Llesner, D., Karsten, U., and Bartsch, I.: Temperature tolerance of western Bantic
807	Sea Fucus vestculosus - growth, photosynthesis and survival, journal of Experimental Marine Dialaces and Ecology 471, 8, 16, 10, 1016// journal 01, 505, 000, 2015
808	Cuiffishe L. D. Labtinger C. Swilltener S. and Winder M. Limited avidence for common
809	Griffiths, J. K., Lentinen, S., Suikkanen, S., and Winder, M.: Limited evidence for common
810	interannual trends in Baltic Sea summer phytoplankton biomass, Plos one, 15,
811	Cuiffiche L.D. Kedin M. Mersimunte F. L.A. Tennelender T. Türmune A. Demedie S.
812	Griffiths, J. K., Kadin, M., Nascimento, F. J. A., Tamelander, T., Tornroos, A., Bonaglia, S.,
015	Nordetröm M.C. Norkko, A. Olsson, I. Waizel P. Zudelis, P. Planekner, T.
014	Nordsholli, M. C., Norkko, A., Oissoil, J., Weiger, D., Zydelis, K., Dielickier, T., Nijranan S. and Windar, M. The importance of benthic palacia coupling for marine
01J 016	Nillatien, S., and Winder, M. The importance of benuine-peragic coupling for marine
817	10 1111/ach 13642 2017
818	Groetsch P M M Simis S G H Eleveld M A and Peters S W M Spring blooms in
810	the Baltic Sea have weakened but lengthened from 2000 to 2014 Biogeosciences 13
820	$4059_{-}4973_{-}10_{-}5194/ba_{-}13_{-}4959_{-}2016_{-}2016_{-}$
821	Gubelit Y I: Climatic impact on community of filamentous macroalgae in the Neva estuary
822	(eastern Baltic Sea) Marine Pollution Bulletin 91 166-172
823	10 1016/i marpolbul 2014 12 009 2015
824	Gustafsson B G Schenk F Blenckner T Eilola K Meier H E M Müller-Karulis B
825	Neumann, T., Ruoho-Airola, T., Savchuk, O. P., and Zorita, E.: Reconstructing the
826	development of Baltic Sea eutrophication 1850-2006. Ambio, 41, 534-548.
827	10.1007/s13280-012-0318-x, 2012.
828	Gårdmark, A. and Huss, M.: Individual variation and interactions explain food web responses
829	to global warming, Philosophical Transactions of the Royal Society B-Biological
830	Sciences, 375, 11, 10.1098/rstb.2019.0449, 2020.
831	Gårdmark, A., Lindegren, M., Neuenfeldt, S., Blenckner, T., Heikinheimo, O., Müller-
832	Karulis, B., Niiranen, S., Tomczak, M. T., Aro, E., Wikström, A., and Möllmann, C.:
833	Biological ensemble modeling to evaluate potential futures of living marine resources,
834	Ecological Applications, 23, 742-754, 10.1890/12-0267.1, 2013.
835	Henseler, C., Oesterwind, D., Kotterba, P., Nordström, M. C., Snickars, M., Törnroos, A.,
836	and Bonsdorff, E .: Impact of round goby on native invertebrate communities - An
837	experimental field study, Journal of Experimental Marine Biology and Ecology, 541, 11,
838	10.1016/j.jembe.2021.151571, 2021.
839	Hillebrand, H., Soininen, J., and Snoeijs, P.: Warming leads to higher species turnover in a
840	coastal ecosystem, Global Change Biology, 16, 1181-1193, 10.1111/j.1365-
841	2486.2009.02045.x, 2010.
842	Hinrichsen, H. H., Huwer, B., Makarchouk, A., Petereit, C., Schaber, M., and Voss, R.:
843	Climate-driven long-term trends in Baltic Sea oxygen concentrations and the potential
844	consequences for eastern Baltic cod (Gadus morhua), Ices Journal of Marine Science,
845	68, 2019-2028, 10.1093/icesjms/fsr145, 2011.
846	Hjerne, O., Hajdu, S., Larsson, U., Downing, A. S., and Winder, M.: Climate driven changes
847	in timing, composition and magnitude of the Baltic Sea phytoplankton spring bloom,
848	Frontiers in Marine Science, 6, 15, 10.3389/fmars.2019.00482, 2019.
849	Holopainen, K., Lehtiniemi, M., Meier, H. M., Albertsson, J., Gorokhova, E., Kotta, J., and
85U 951	viitasaio, M.: Impacts of changing climate on the non-indigenous invertebrates in the
851 852	normern Battic Sea by end of the twenty-first century, Biological invasions, 18, 3015-
032	<i>JUJ2</i> , 2010.

853	Horn H G Boersma M Garzke I Loder M G I Sommer II and Aberle N Effects
854	of high CO2 and warming on a Baltic Sea microzoonlankton community. Ices Journal of
855	Marine Science, 73, 772-782, 10,1093/icesims/fsy198, 2016.
856	Huttunen, L. Lehtonen, H., Huttunen, M., Piirainen, V., Korppoo, M., Veijalainen, N.,
857	Viitasalo, M., and Vehvilainen, B.: Effects of climate change and agricultural adaptation
858	on nutrient loading from Finnish catchments to the Baltic Sea Science of the Total
859	Environment, 529, 168-181, 10,1016/i.scitoteny,2015.05.055, 2015.
860	Hyytjäinen, K., Bauer, B., Bly Joyce, K., Ehrnsten, E., Eilola, K., Gustafsson, B. G., Meier,
861	H. M., Norkko, A., Saraiya, S., and Tomczak, M.: Provision of aquatic ecosystem
862	services as a consequence of societal changes: The case of the Baltic Sea. Population
863	Ecology, 63, 61-74, 2019.
864	Hällfors, H., Backer, H., Leppänen, J. M., Hällfors, S., Hällfors, G., and Kuosa, H.: The
865	northern Baltic Sea phytoplankton communities in 1903-1911 and 1993-2005: a
866	comparison of historical and modern species data, Hydrobiologia, 707, 109-133.
867	10.1007/s10750-012-1414-4, 2013.
868	Hänninen, J., Vuorinen, I., Rajasilta, M., and Reid, P. C.: Response of the Baltic and North
869	Seas to river runoff from the Baltic watershed - Physical and biological changes,
870	Progress in Oceanography, 138, 91-104, 10.1016/j.pocean.2015.09.001, 2015.
871	IPCC: Summary for Policymakers, in: IPCC Special Report on the Ocean and Cryosphere in
872	a Changing Climate, edited by: Pörtner, HO., Roberts, D. C., Masson-Delmotte, V.,
873	Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem,
874	A., Petzold, J., Rama, B., and Weyer, N. M., 1-36, 2019.
875	Ito, M., Scotti, M., Franz, M., Barboza, F. R., Buchholz, B., Zimmer, M., Guy-Haim, T., and
876	Wahl, M.: Effects of temperature on carbon circulation in macroalgal food webs are
877	mediated by herbivores, Marine Biology, 166:158, 1-11, 10.1007/s00227-019-3596-z,
878	2019.
879	Jakubowska, M., Jerzak, M., Normant, M., Burska, D., and Drzazgowski, J.: Effect of carbon
880	dioxide -induced water acidification on the physiological processes of the Baltic isopod
881	Saduria entomon, Journal of Shellfish Research, 32, 825-834, 10.2983/035.032.0326,
882	2013.
883	Jansson, A., Lischka, S., Boxhammer, T., Schulz, K. G., and Norkko, J.: Survival and settling
884	of larval <i>Macoma balthica</i> in a large-scale mesocosm experiment at different f CO2
885	levels, Biogeosciences, 13, 3377-3385, 10.5194/bg-13-3377-2016, 2016.
886	Jansson, A., Klais-Peets, R., Griniene, E., Rubene, G., Semenova, A., Lewandowska, A., and
887	Engstrom-Ost, J.: Functional shifts in estuarine zooplankton in response to climate
888	variability, Ecology and Evolution, 10, 11591-11606, 10.1002/ece3.67/93, 2020.
889	Johannesson, K., Smolarz, K., Grahn, M., and Andre, C.: The future of Baltic Sea
890	populations: Local extinction or evolutionary rescue?, Ambio, 40, 179-190,
891	10.100//s13280-010-0129-x, 2011.
892	Jones, M. C. and Cheung, W. W.: Multi-model ensemble projections of climate change
893	effects on global marine biodiversity, ICES Journal of Marine Science, 72, 741-752,
894	2013. Jansson D. D. Makanas D. O. Caroll II. Danadarff E. and Nilsson Jasahi M. Esplagiash
893 806	Jonsson, P. K., Moksnes, P. O., Corell, H., Bonsuorii, E., and Misson Jacobi, M.: Ecological
090 807	A quatic Conservation: Marine and Freshwater Ecosystems 30, 743, 760
898	10 1002/age 3286 2020
899	Ionsson P.R. Kotta I. Andersson H.C. Herkül K. Virtanen F. Sandman Nyström Δ
900	and Johannesson K ' High climate velocity and nonulation fragmentation may constrain
901	climate-driven range shift of the key habitat former Fucus vesiculosus. Diversity and
902	Distributions, 24, 892-905, 10.1111/ddi.12733, 2018.

30

903	Jänes, H., Herkül, K., and Kotta, J.: Environmental niche separation between native and non-
904	native benthic invertebrate species: Case study of the northern Baltic Sea, Marine
905	Environmental Research, 131, 123-133, 10.1016/j.marenvres.2017.08.001, 2017.
906	Kahru, M., Elmgren, R., and Savchuk, O. P.: Changing seasonality of the Baltic Sea,
907	Biogeosciences, 13, 1009-1018, 10.5194/bg-13-1009-2016, 2016.
908	Klais, R., Tamminen, T., Kremp, A., Spilling, K., and Olli, K.: Decadal-scale changes of
909	dinoflagellates and diatoms in the anomalous Baltic Sea spring bloom, Plos One, 6,
910	10.1371/journal.pone.0021567, 2011.
911	Klais, R., Tamminen, T., Kremp, A., Spilling, K., An, B. W., Hajdu, S., and Olli, K.: Spring
912	phytoplankton communities shaped by interannual weather variability and dispersal
913	limitation: Mechanisms of climate change effects on key coastal primary producers,
914	Limnology and Oceanography, 58, 753-762, 10.4319/lo.2012.58.2.0753, 2013.
915	Klauschies, T., Bauer, B., Aberle-Malzahn, N., Sommer, U., and Gaedke, U.: Climate change
916	effects on phytoplankton depend on cell size and food web structure, Marine Biology,
917	159, 2455-2478, 10.1007/s00227-012-1904-y, 2012.
918	Korpinen, S., Honkanen, T., Vesakoski, O., Hemmi, A., Koivikko, R., Loponen, J., and
919	Jormalainen, V.: Macroalgal communities face the challenge of changing biotic
920	interactions: Review with focus on the Baltic Sea, Ambio, 36, 203-211, 10.1579/0044-
921	7447(2007)36[203:Mcftco]2.0.Co;2, 2007.
922	Kortsch, S., Frelat, R., Pecuchet, L., Olivier, P., Putnis, I., Bonsdorff, E., Ojaveer, H.,
923	Jurgensone, I., Strake, S., Rubene, G., Kruze, E., and Nordstrom, M. C.: Disentangling
924	temporal food web dynamics facilitates understanding of ecosystem functioning, Journal
925	of Animal Ecology, 90, 1205-1216, 10.1111/1365-2656.13447, 2021.
926	Kotta, J., Vanhatalo, J., Jänes, H., Orav-Kotta, H., Rugiu, L., Jormalainen, V., Bobsien, I.,
927	Viitasalo, M., Virtanen, E., and Sandman, A. N.: Integrating experimental and
928	distribution data to predict future species patterns, Scientific reports, 9, 1821, 2019.
929	Kremp, A., Godhe, A., Egardt, J., Dupont, S., Suikkanen, S., Casabianca, S., and Penna, A.:
930	Intraspecific variability in the response of bloom-forming marine microalgae to changed
931	climate conditions, Ecology and Evolution, 2, 1195-1207, 10.1002/ece3.245, 2012.
932	Kremp, A., Oja, J., LeTortorec, A. H., Hakanen, P., Tahvanainen, P., Tuimala, J., and
933	Suikkanen, S.: Diverse seed banks favour adaptation of microalgal populations to future
934	climate conditions, Environmental Microbiology, 18, 679-691, 10.1111/1462-
935	2920.13070, 2016.
936	Kuosa, H., Fleming-Lehtinen, V., Lehtinen, S., Lehtiniemi, M., Nygård, H., Raateoja, M.,
937	Raitaniemi, J., Tuimala, J., Uusitalo, L., and Suikkanen, S.: A retrospective view of the
938	development of the Gulf of Bothnia ecosystem, Journal of Marine Systems, 167, 78-92,
939	10.1016/j.jmarsys.2016.11.020, 2017.
940	Lappalainen, J., Virtanen, E. A., Kallio, K., Junttila, S., and Viitasalo, M.: Substrate
941	limitation of a habitat-forming genus Fucus under different water clarity scenarios in the
942	northern Baltic Sea, Estuarine Coastal and Shelf Science, 218, 31-38,
943	10.1016/j.ecss.2018.11.010, 2019.
944	Lefebure, R., Degerman, R., Andersson, A., Larsson, S., Eriksson, L. O., Båmstedt, U., and
945	Byström, P.: Impacts of elevated terrestrial nutrient loads and temperature on pelagic
946	food-web efficiency and fish production, Global Change Biology, 19, 1358-1372,
947	10.1111/gcb.12134, 2013.
948	Leidenberger, S., De Giovanni, R., Kulawik, R., Williams, A. R., and Bourlat, S. J.: Mapping
949	present and future potential distribution patterns for a meso-grazer guild in the Baltic

950 Sea, Journal of Biogeography, 42, 241-254, 10.1111/jbi.12395, 2015.

951 952	Lewandowska, A. M., Boyce, D. G., Hofmann, M., Matthiessen, B., Sommer, U., and Worm, B : Effects of sea surface warming on marine plantton Ecology Letters, 17, 614, 623
952	10.1111/ele 12265, 2014
954	Lewandowska A M Breithaunt P Hillebrand H Honne H G Jürgens K and
955	Sommer U Responses of primary productivity to increased temperature and
956	nhytonlankton diversity. Journal of Sea Research 72, 87-93
957	$10\ 1016/i\ seares\ 2011\ 10\ 003\ \ 2012$
958	Lindegren, M., Blenckner, T., and Stenseth, N. C.: Nutrient reduction and climate change
959	cause a potential shift from pelagic to benthic nathways in a eutrophic marine ecosystem.
960	Global Change Biology, 18, 3491-3503, 10,1111/i,1365-2486,2012,02799,x, 2012.
961	Lindegren, M., Diekmann, R., and Möllmann, C.: Regime shifts, resilience and recovery of a
962	cod stock, Marine Ecology Progress Series, 402, 239-253, 10.3354/meps08454, 2010a.
963	Lindegren, M., Möllmann, C., Nielsen, A., Brander, K., MacKenzie, B. R., and Stenseth, N.
964	C.: Ecological forecasting under climate change: the case of Baltic cod, Proceedings of
965	the Royal Society B-Biological Sciences, 277, 2121-2130, 10.1098/rspb.2010.0353,
966	2010b.
967	Lindh, M. V., Riemann, L., Baltar, F., Romero-Oliva, C., Salomon, P. S., Graneli, E., and
968	Pinhassi, J.: Consequences of increased temperature and acidification on
969	bacterioplankton community composition during a mesocosm spring bloom in the Baltic
970	Sea, Environmental Microbiology Reports, 5, 252-262, 10.1111/1758-2229.12009, 2013.
971	Lischka, S., Bach, L. T., Schulz, K. G., and Riebesell, U.: Ciliate and mesozooplankton
972	community response to increasing CO2 levels in the Baltic Sea: insights from a large-
973	scale mesocosm experiment, Biogeosciences, 14, 447-466, 10.5194/bg-14-447-2017,
974	2017.
975	MacKenzie, B. R., Meier, H. E. M., Lindegren, M., Neuenfeldt, S., Eero, M., Blenckner, T.,
976	Tomczak, M. T., and Niiranen, S.: Impact of climate change on fish population dynamics
977	in the Baltic Sea: a dynamical downscaling investigation, Ambio, 41, 626-636,
978	10.1007/s13280-012-0325-y, 2012.
979	Meier, H. E. M., Eilola, K., and Almroth, E.: Climate-related changes in marine ecosystems
980	simulated with a 3-dimensional coupled physical-biogeochemical model of the Baltic
981	Sea, Climate Research, 48, 31-55, 10.3354/cr00968, 2011a.
982	Meier, H. E. M., Andersson, H. C., Eilola, K., Gustafsson, B. G., Kuznetsov, I., Müller-
983	Karulis, B., Neumann, T., and Savchuk, O. P.: Hypoxia in future climates: A model
984	ensemble study for the Baltic Sea, Geophysical Research Letters, 38, 1-6,
985	10.1029/2011g1049929, 2011b.
986	Meier, H. E. M., Dieterich, C., Eilola, K., Groger, M., Hoglund, A., Kadtke, H., Saraiva, S.,
987	and wanistrom, I.: Future projections of record-breaking sea surface temperature and
988	cyanobacteria bloom events in the Battic Sea, Ambio, 48, 1562-1576, 10.1007/ $s15280$ -
989	019-01253-5, 2019a. Majar H E M Hardair B. Andarsson H C. Diatariah C. Eilala K. Custafason B. C.
990	Heider, H. E. M., Hordolf, K., Andersson, H. C., Dieterich, C., Eliola, K., Gustalisson, B. G.,
991	and changing putrient loads on the Baltic Sea environment in an ensemble of transient
992	simulations for 1961-2009. Climate Dynamics 39, 2421-2441, 10, 1007/s00382-012-
994	1339-7 2012a
995	Meier H E M Müller-Karulis B Andersson H C Dieterich C Eilola K Gustafsson
996	B. G., Höglund, A., Hordoir, R., Kuznetsov, L. Neumann, T., Ranibar, Z., Savchuk, O
997	P. and Schimanke, S.: Impact of climate change on ecological quality indicators and
998	biogeochemical fluxes in the Baltic Sea: a multi-model ensemble study. Ambio. 41, 558-
999	573, 10.1007/s13280-012-0320-3, 2012b.

1000	Meier, H. E. M., Edman, M. K., Eilola, K. J., Placke, M., Neumann, T., Andersson, H. C.,
1001	Brunnabend, SE., Dieterich, C., Frauen, C., Friedland, R., Gröger, M., Gustafsson, B.
1002	G., Gustafsson, E., Isaev, A., Kniebusch, M., Kuznetsov, I., Müller-Karulis, B., Omstedt,
1003	A., Ryabchenko, V., Saraiva, S., and Savchuk, O. P.: Assessment of Eutrophication
1004	Abatement Scenarios for the Baltic Sea by Multi-Model Ensemble Simulations, Frontiers
1005	in Marine Science, 5, 10.3389/fmars.2018.00440, 2018.
1006	Meier, H. E. M., Edman, M., Eilola, K., Placke, M., Neumann, T., Andersson, H. C.,
1007	Brunnabend, S. E., Dieterich, C., Frauen, C., Friedland, R., Gröger, M., Gustafsson, B.
1008	G., Gustafsson, E., Isaev, A., Kniebusch, M., Kuznetsov, I., Müller-Karulis, B.,
1009	Naumann, M., Omstedt, A., Ryabchenko, V., Saraiya, S., and Saychuk, O. P.:
1010	Assessment of Uncertainties in Scenario Simulations of Biogeochemical Cycles in the
1011	Baltic Sea, Frontiers in Marine Science, 6, 10.3389/fmars.2019.00046, 2019b.
1012	Meier, H. E. M., Kniebusch, M., Dieterich, C., Gröger, M., Zorita, E., Elmoren, R., Myrberg,
1012	K Ahola M Bartosova A - Bonsdorff E Börgel F Capell R Carlén I Carlund
1013	T Carstensen I Christensen O B Dierschke V Frauen C Fredriksen M Gaget
1015	F. Galatius A. Haanala I. I. Halkka A. Hugelius G. Hunicke B. Jaagus I. Jussi
1015	M Käyhkö I Kirchner N Kiellström F Kulinski K Lehmann A Lindström G
1017	May W Miller P Mohrholz V Müller-Karulis B Pavón-Jordán D Quante M
1017	Reckermann M Rutgersson A Savchuk O P Stendel M Tuomi I Viitasalo M
1010	Weisse R and Zhang W : Climate change in the Baltic Sea region: a summary Earth
1012	System Dynamics, Preprint https://doi.org/10.5194/esd_2021_67_2021
1020	Moustaka Gouni M. Kormas K. A. Scotti M. Vardaka F. and Sommar II: Warming and
1021	acidification effects on planktonic beterotrophic pico- and papoflacellates in a mesocosm
1022	avaluation encets on planktone heterotrophic pico- and hanonagenates in a mesocosm avaliante protist, 167, 380,410, 10,1016/j.protis 2016.06.004, 2016
1023	Mäkingn K. Vuoringn I. and Hänningn I.: Climate induced hydrography change favoure
1024	small hadiad zoonlankten in a goostal accessitem. Hudrohiologia 702, 82, 06
1025	$10,1007/_{0}10750,016,2046,6,2017$
1020	Möller K. O. Schmidt I. O. St. John M. Temming A. Diekmann P. Peters I. Elector
1027	I Soll A E Horrmonn I D and Möllmonn C : Efforts of alimate induced habitat
1028	changes on a key zoonlankton species. Journal of Plankton Research 37, 530, 541
1029	10 1002/plopht/fby/022 2015
1021	10.1075/pidikt/100055, 2015. Möllmann C. Dialmann D. Müllar Karulia D. Kornilova C. Dlikaha M. and Ava D.
1022	Decreasing of a large maxima accounter due to structure due to attract and anthrono conic
1032	resource a discontinuous racima shift in the Control Poltic See, Clobal Change Piclosy
1035	pressure. a discontinuous regime sint in the Central Battle Sea, Global Change Blology, 15, 1277, 1202, 10, 1111/, 1265, 2496, 2008, 01814 \times , 2000
1034	15, 15//-1595, 10.1111/j.1505-2400.2006.01614.X, 2009.
1033	And Savahyle O. D. Entremas of temperature, any can and blooms in the Baltic See in a
1030	and Savenuk, O. P.: Extremes of temperature, oxygen and bioonis in the Battle Sea in a changing alimate. Ambio. 41, 574, 585, 10, 1007/012280, 012, 0221, 2, 2012
1029	Changing Chinate, Amolo, 41, 574-585, 10.1007/815280-012-0521-2, 2012.
1038	Millan Karalia, D. Macranan, T. and Maian H. F. M. Cambinad effects of alabel
1039	Muller-Karulis, B., Neumann, T., and Meler, H. E. M.: Combined effects of global
1040	Character Charge and regional ecosystem drivers on an exploited marine food web, Global
1041	Change Biology, 19, 5527-5542, 10.1111/gc0.12509, 2015.
1042	Nydani, A., Panigrani, S., and Wikner, J.: Increased microbial activity in a warmer and wetter
1043	climate enhances the risk of coastal hypoxia, Fems Microbiology Ecology, 85, 338-347,
1044	10.1111/15/4-6941.12123, 2013.
1045	Olli, K., Klais, R., Tamminen, T., Ptacnik, R., and Andersen, T.: Long term changes in the
1046	Baltic Sea phytoplankton community, Boreal Environment Research, 16, 3-14, 2011.
1047	Olorsson, M., Suikkanen, S., Kobos, J., Wasmund, N., and Karlson, B.: Basin-specific
1048	changes in filamentous cyanobacteria community composition across four decades in the D_{1} is D_{2} in the D_{1} is D_{2} in the D_{2} in the D_{2} is D_{2} in the D_{2} in the D_{2} is D_{2} in D_{2} in D_{2} in D_{2} in D_{2} in D_{2} is D_{2} in $D_$
1049	Baine Sea, Harmful Algae, 91, 12, 10.1016/j.hal.2019.101685, 2020.

1050 1051	Olofsson, M., Torstensson, A., Karlberg, M., Steinhoff, F. S., Dinasquet, J., Riemann, L., Chierici, M., and Wulff, A.: Limited response of a spring bloom community inoculated
1052	with filamentous cyanobacteria to elevated temperature and pCO(2), Botanica Marina, 62, 3-16, 10, 1515/bot-2018-0005, 2019
1053	Oleson I. Tomozek M. T. Oieveer H. Gårdmark A. Döllumee A. Müller Karulie P.
1054	Ustups, D., Dinesen, G. E., Peltonen, H., Putnis, I., Szymanek, L., Simm, M.,
1056	Heikinheimo, O., Gasvukov, P., Axe, P., and Bergström, L.: Temporal development of
1057	coastal ecosystems in the Baltic Sea over the past two decades, Ices Journal of Marine
1058	Science, 72, 2539-2548, 10.1093/icesjms/fsv143, 2015.
1059	Otto, S. A., Kornilovs, G., Llope, M., and Mollmann, C.: Interactions among density, climate,
1060	and food web effects determine long-term life cycle dynamics of a key copepod, Marine
1061	Ecology Progress Series, 498, 73-U408, 10.3354/meps10613, 2014a.
1062	Otto, S. A., Diekmann, R., Flinkman, J., Kornilovs, G., and Möllmann, C.: Habitat
1063	heterogeneity determines climate impact on zooplankton community structure and
1064	dynamics, Plos One, 9, 10.1371/journal.pone.0090875, 2014b.
1065	Paasche, Ø., Österblom, H., Neuenfeldt, S., Bonsdorff, E., Brander, K., Conley, D. J., Durant,
1066	J. M., Eikeset, A. M., Goksøyr, A., and Jónsson, S.: Connecting the seas of norden,
1067	Nature Climate Change, 5, 89, 2015.
1068	Pajusalu, L., Martin, G., and Pöllumae, A.: Results of laboratory and field experiments of the
1069	direct effect of increasing CO2 on net primary production of macroalgal species in
1070	brackish-water ecosystems, P. Est. Acad. Sci., 62, 148-154, 10.3176/proc.2013.2.09,
1071	2013.
1072	Pajusalu, L., Martin, G., Paalme, T., and Pöllumae, A.: The effect of CO2 enrichment on net
1073	photosynthesis of the red alga <i>Furcellaria lumbricalis</i> in a brackish water environment,
1074	Peerj, 4, e2505, 10.7717/peerj.2505, 2016.
1075	Pajusalu, L., Martin, G., Pöllumae, A., Torn, K., and Paalme, T.: Direct effects of increased
1076	CO2 concentrations in seawater on the net primary production of charophytes in a
1077	shallow, coastal, brackish-water ecosystem, Boreal Environment Research, 20, 413-422,
1078	2015.
1079	Pansch, C., Nasrolahi, A., Appelhans, Y. S., and Wahl, M.: Impacts of ocean warming and
1080	acidification on the larval development of the barnacle Amphibalanus improvisus,
1081	Journal of Experimental Marine Biology and Ecology, 420, 48-55,
1082	10.1016/j.jembe.2012.03.023, 2012.
1083	Pansch, C., Scotti, M., Barboza, F. R., Al-Janabi, B., Brakel, J., Briski, E., Bucholz, B.,
1084	Franz, M., Ito, M., Paiva, F., Saha, M., Sawall, Y., Weinberger, F., and Wahl, M.: Heat
1085	waves and their significance for a temperate benthic community: A near-natural
1086	experimental approach, Global Change Biology, 24, 4357-4367, 10.1111/gcb.14282,
1087	2018.
1088	Paul, C., Matthiessen, B., and Sommer, U.: Warming, but not enhanced CO2 concentration,
1089	quantitatively and qualitatively affects phytoplankton biomass, Marine Ecology Progress
1090	Series, 528, 39-51, 10.3354/meps11264, 2015.
1091	Paul, C., Sommer, U., Garzke, J., Moustaka-Gouni, M., Paul, A., and Matthiessen, B.: Effects
1092	of increased CO2 concentration on nutrient limited coastal summer plankton depend on
1093	temperature. Limnology and Oceanography, 61, 853-868, 10,1002/lno,10256, 2016.
1094	Pecuchet, L., Lindegren, M., Kortsch, S., Calkiewicz, J., Jurgensone, I., Margonski, P., Otto,
1095	S. A., Putnis, I., Strake, S., and Nordstrom, M. C.: Spatio-temporal dynamics of multi-
1096	trophic communities reveal ecosystem-wide functional reorganization. Ecography. 43.
1097	197-208, 10.1111/ecog.04643, 2020.
1098	Pekcan-Hekim, Z., Gårdmark, A., Karlson, A. M. L., Kauppila, P., Bergenius, M., and
1099	Bergström, L.: The role of climate and fisheries on the temporal changes in the Bothnian

1100	Bay foodweb, Ices Journal of Marine Science, 73, 1739-1749, 10.1093/icesjms/fsw032,
1101	2016.
1102	Pekcan-Hekim, Z., Urho, L., Auvinen, H., Heikinheimo, O., Lappalainen, J., Raitaniemi, J.,
1103	and Soderkultalahti, P.: Climate warming and pikeperch year-class catches in the Baltic
1104	Sea, Ambio, 40, 447-456, 10.1007/s13280-011-0143-7, 2011.
1105	Pihlainen, S., Zandersen, M., Hyytiäinen, K., Andersen, H. E., Bartosova, A., Gustafsson, B.,
1106	Jabloun, M., McCrackin, M., Meier, H. M., and Olesen, J. E.: Impacts of changing
1107	society and climate on nutrient loading to the Baltic Sea, Science of The Total
1108	Environment, 138935, 2020.
1109	Reusch, T. B. H., Dierking, J., Andersson, H. C., Bonsdorff, E., Carstensen, J., Casini, M.,
1110	Czajkowski, M., Hasler, B., Hinsby, K., Hyytiainen, K., Johannesson, K., Jomaa, S.,
1111	Jormalainen, V., Kuosa, H., Kurland, S., Laikre, L., MacKenzie, B. R., Margonski, P.,
1112	Melzner, F., Oesterwind, D., Ojaveer, H., Refsgaard, J. C., Sandstrom, A., Schwarz, G.,
1113	Tonderski, K., Winder, M., and Zandersen, M.: The Baltic Sea as a time machine for the
1114	future coastal ocean, Science Advances, 4, eaar8195, 10.1126/sciadv.aar8195, 2018.
1115	Rinne, H. and Salovius-Lauren, S.: The status of brown macroalgae <i>Fucus</i> spp. and its
1116	relation to environmental variation in the Finnish marine area, northern Baltic Sea,
111/	Ambio, 49, 118-129, 10.100//\$13280-019-011/5-0, 2020.
1110	Romausier, E., Rugiu, L., and Jormaiamen, V.: Forecast climate change conditions sustain
1119	foundation realized species. Marine Environmental Descarsh 141, 205, 212
1120	10 1016/j morenurge 2018 00 014, 2018
1121	10.1010/J.IIIdellVICS.2010.09.014, 2010.
1122	Gamete release and subsequent fertilisation in <i>Fucus vasiculosus</i> (Phaeonhyceae) are
1123	weakened by climate change-forced hyposaline conditions. Phycologia 58, 111-114
1124	10 1080/00318884 2018 1524246 2019
1125	Rousi, H., Laine, A. O., Peltonen, H., Kangas, P., Andersin, A. B., Rissanen, J., Sandberg-
1127	Kilpi, E., and Bonsdorff, E.: Long-term changes in coastal zoobenthos in the northern
1128	Baltic Sea: the role of abiotic environmental factors. Ices Journal of Marine Science, 70.
1129	440-451, 10.1093/icesjms/fss197, 2013.
1130	Rousi, H. E. J., Korpinen, S., and Bonsdorff, E.: Brackish-water benthic fauna under
1131	fluctuating environmental conditions: the role of eutrophication, hypoxia and global
1132	change, Frontiers in Marine Science, 6, 464, 2019.
1133	Rugiu, L., Manninen, I., Rothausler, E., and Jormalainen, V.: Tolerance to climate change of
1134	the clonally reproducing endemic Baltic seaweed, Fucus radicans: is phenotypic
1135	plasticity enough?, Journal of Phycology, 54, 888-898, 10.1111/jpy.12796, 2018a.
1136	Rugiu, L., Manninen, I., Rothausler, E., and Jormalainen, V.: Tolerance and potential for
1137	adaptation of a Baltic Sea rockweed under predicted climate change conditions, Marine
1138	Environmental Research, 134, 76-84, 10.1016/j.marenvres.2017.12.016, 2018b.
1139	Rugiu, L., Manninen, I., Sjoroos, J., and Jormalainen, V.: Variations in tolerance to climate
1140	change in a key littoral herbivore, Marine Biology, 165:18, 1-11, 10.1007/s00227-017-
1141	3275-x, 2018c.
1142	Ryabchenko, V. A., Karlin, L. N., Isaev, A. V., Vankevich, R. E., Eremina, T. R.,
1143	Molchanov, M. S., and Savchuk, O. P.: Model estimates of the eutrophication of the
1144	Baltic Sea in the contemporary and future climate, Oceanology, 56, 36-45,
1145	10.1134/s0001437016010161, 2016.
1146	Röhr, M. E., Boström, C., Canal-Verges, P., and Holmer, M.: Blue carbon stocks in Baltic
1147	Sea eelgrass (Zostera marina) meadows, Biogeosciences, 13, 6139-6153, 10.5194/bg-13-

1148 6139-2016, 2016.

1149	Saha, M., Barboza, F. R., Somerfield, P. J., Al-Janabi, B., Beck, M., Brakel, J., Ito, M.,
1150	Pansch, C., Nascimento-Schulze, J. C., Thor, S. J., Weinberger, F., and Sawall, Y.:
1151	Response of foundation macrophytes to near-natural simulated marine heatwaves, Global
1152	Change Biology, 26, 417-430, 10.1111/gcb.14801, 2020.
1153	Sahla, M., Tolvanen, H., Ruuskanen, A., and Kurvinen, L.: Assessing long term change of
1154	Fucus spp. communities in the northern Baltic Sea using monitoring data and spatial
1155	modeling, Estuarine, Coastal and Shelf Science, 245, 107023,
1156	https://doi.org/10.1016/j.ecss.2020.107023, 2020.
1157	Salo, T., Mattila, J., and Eklöf, J.: Long-term warming affects ecosystem functioning through
1158	species turnover and intraspecific trait variation, Oikos, 129, 283-295,
1159	10.1111/oik.06698, 2020.
1160	Saraiva, S., Meier, H. E. M., Andersson, H., Höglund, A., Dieterich, C., Gröger, M., Hordoir,
1161	R., and Eilola, K.: Baltic Sea ecosystem response to various nutrient load scenarios in
1162	present and future climates, Climate Dynamics, 52, 3369-3387, 10.1007/s00382-018-
1163	4330-0, 2018.
1164	Saraiva, S., Meier, H. E. M., Andersson, H., Höglund, A., Dieterich, C., Gröger, M., Hordoir,
1165	R., and Eilola, K.: Uncertainties in projections of the Baltic Sea ecosystem driven by an
1166	ensemble of Global Climate Models, Frontiers in Earth Science, 6,
1167	10.3389/feart.2018.00244, 2019.
1168	Schmidt, K., Birchill, A. J., Atkinson, A., Brewin, R. J. W., Clark, J. R., Hickman, A. E.,
1169	Johns, D. G., Lohan, M. C., Milne, A., Pardo, S., Polimene, L., Smyth, T. J., Tarran, G.
1170	A., Widdicombe, C. E., Woodward, E. M. S., and Ussher, S. J.: Increasing
1171	picocyanobacteria success in shelf waters contributes to long-term food web degradation,
1172	Global Change Biology, 26, 5574-5587, 10.1111/gcb.15161, 2020.
1173	Skogen, M. D., Eilola, K., Hansen, J. L. S., Meier, H. E. M., Molchanov, M. S., and
1174	Ryabchenko, V. A.: Eutrophication status of the North Sea, Skagerrak, Kattegat and the
1175	Baltic Sea in present and future climates: A model study, Journal of Marine Systems,
1176	132, 174-184, 10.1016/j.jmarsys.2014.02.004, 2014.
1177	Snickars, M., Weigel, B., and Bonsdorff, E.: Impact of eutrophication and climate change on
1178	fish and zoobenthos in coastal waters of the Baltic Sea, Marine Biology, 162, 141-151,
1179	10.1007/s00227-014-2579-3, 2015.
1180	Sommer, U. and Lewandowska, A.: Climate change and the phytoplankton spring bloom:
1181	warming and overwintering zooplankton have similar effects on phytoplankton, Global
1182	Change Biology, 17, 154-162, 10.1111/j.1365-2486.2010.02182.x, 2011.
1183	Sommer, U., Paul, C., and Moustaka-Gouni, M.: Warming and ocean acidification effects on
1184	phytoplankton - From species shifts to size shifts within species in a mesocosm
1185	experiment, Plos One, 10, 10.1371/journal.pone.0125239, 2015.
1186	Sommer, U., Aberle, N., Lengfellner, K., and Lewandowska, A.: The Baltic Sea spring
1187	phytoplankton bloom in a changing climate: an experimental approach, Marine Biology,
1188	159, 2479-2490, 10.1007/s00227-012-1897-6, 2012.
1189	Sparrevohn, C. R., Lindegren, M., and Mackenzie, B. R.: Climate-induced response of
1190	commercially important flatfish species during the 20th century, Fisheries
1191	Oceanography, 22, 400-408, 10.1111/fog.12030, 2013.
1192	Stenseth, N. C., Payne, M. R., Bonsdorff, E., Dankel, D. J., Durant, J. M., Anderson, L. G.,
1193	Armstrong, C. W., Blenckner, T., Brakstad, A., Dupont, S., Eikeset, A. M., Goksøyr, A.,
1194	Jónsson, S., Kuparinen, A., Vage, K., Osterblom, H., and Paasche, O.: Attuning to a
1195	changing ocean, Proceedings of the National Academy of Sciences of the United States
1196	of America, 117, 20363-20371, 10.1073/pnas.1915352117, 2020.
1197	Stiasny, M. H., Mittermayer, F. H., Sswat, M., Voss, R., Jutfelt, F., Chierici, M.,
1198	Puvanendran, V., Mortensen, A., Reusch, T. B. H., and Clemmesen, C.: Ocean

1100	acidification offects on Atlantic and langel survival and recruitment to the fished
1200	nonulation Plas One 11 10 1271/journal none 0155448 2016
1200	Strååt K. D. Morth C. M. and Undeman E: Euture export of particulate and discolved
1201	organic carbon from land to coastal zones of the Baltic Sea. Journal of Marine Systems
1202	177 8 20 10 1016/i imargue 2017 00 002 2018
1203	Suikkanan S. Bulina S. Engetröm Öst I. Lahtiniami M. Lahtinan S. and Brutamark A.
1204	Climate change and eutrophication induced shifts in northern summer plankton
1205	communities Plos One 8 10 1371/journal none 0066475 2013
1200	Svensson E. Karlsson E. Gårdmark A. Olsson I. Adill A. Zie, I. Specific P. and Eklöf
1207	L S : In situ warming strangthans trophic cascadas in a coastal food wab Oikos 126
1208	1.50.1161 10 1111/oik 03773 2017
1209	Takolandar, A. Cabaza, M. and Laskinan, E. Climata change can cause complex responses
1210	in Baltic Saa macroalgaa: A systematic raviaw, Journal of Saa Basaarch, 123, 16, 20
1211	10 1016/isoares 2017 02 007 2017a
1212	Takolandar, A. Leckingh, E. and Cabeza, M. Supergistic effects of extreme temperature and
1213	low salinity on foundational macroalga Fucus vasiculosus in the northern Baltic Saa
1214	Iournal of Experimental Marine Biology and Ecology 495, 110, 118
1215	10 1016/j jembe 2017 07 001 2017b
1210	The BACC Author Team: Assessment of climate change for the Baltic Sea basin Regional
1217	Climate Studies Springer-Verlag Berlin Heidelberg 1-473 pp 2008
1210	The BACC II Author Team: Second Assessment of Climate Change for the Baltic Sea
1217	Basin Regional Climate Studies, Springer, Cham Heidelberg New York Dordrecht
1220	London 501 nn nn 2015
1221	Timmermann K Norkko I Janas II Norkko A Gustafsson B G and Bonsdorff F:
1222	Modelling macrofaunal biomass in relation to hypoxia and nutrient loading. Journal of
1223	Marine Systems 105 60-69 10 1016/i imarsys 2012 06 001 2012
1224	Torn K Peterson A and Herkül K · Predicting the impact of climate change on the
1226	distribution of the key habitat-forming species in the NE Baltic Sea Journal of Coastal
1227	Research 177-181 10.2112/si95-035.1.2020
1228	Törnroos, A., Pecuchet, L., Olsson, J., Gårdmark, A., Blomovist, M., Lindegren, M., and
1229	Bonsdorff, E.: Four decades of functional community change reveals gradual trends and
1230	low interlinkage across trophic groups in a large marine ecosystem. Global Change
1231	Biology, 25, 1235-1246, 10.1111/gcb.14552, 2019.
1232	Vahtera, E., Conley, D. J., Gustafsson, B. G., Kuosa, H., Pitkänen, H., Savchuk, O. P.,
1233	Tamminen, T., Viitasalo, M., Voss, M., Wasmund, N., and Wulff, F.: Internal ecosystem
1234	feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in
1235	the Baltic Sea, Ambio, 36, 186-194, 10, 1579/0044-7447(2007)36[186; jefenc]2.0.co; 2.
1236	2007.
1237	Vehmaa, A., Hogfors, H., Gorokhova, E., Brutemark, A., Holmborn, T., and Engström-Öst,
1238	J.: Projected marine climate change: effects on copepod oxidative status and
1239	reproduction. Ecology and Evolution. 3, 4548-4557, 10,1002/ece3.839, 2013.
1240	Vehmaa, A., Almen, A. K., Brutemark, A., Paul, A., Riebesell, U., Furuhagen, S., and
1241	Engström-Öst, J.: Ocean acidification challenges copepod phenotypic plasticity,
1242	Biogeosciences, 13, 6171-6182, 10.5194/bg-13-6171-2016, 2016.
1243	Virtanen, E. A., Moilanen, A., and Viitasalo, M.: Marine connectivity in spatial conservation
1244	planning: analogues from the terrestrial realm, Landscape Ecology, 35, 1021-1034,
1245	10.1007/s10980-020-00997-8, 2020.
1246	Virtanen, E. A., Norkko, A., Nyström Sandman, A., and Viitasalo, M.: Identifying areas
1247	prone to coastal hypoxia – the role of topography, Blogeosciences, 16, 3183-3195,
1248	https://doi.org/10.5194/bg-16-3183-2019, 2018a.

 Virtanen, E. A., Viitasalo, M., Lappalainen, J., and Moilanen, A.: Evaluation, gap analysis, and potential expansion of the Finnish marine protected area network, Frontiers in Marine Science, 5, 402, 2018b. Voss, R., Hinrichsen, H. H., Quaas, M. F., Schmidt, J. O., and Tahvonen, O.: Temperature change and Baltic sprat: from observations to ecological-economic modelling, Ices Journal of Marine Science, 68, 1244-1256, 10.1093/icesjms/fsr063, 2011. Vuorinen, I., Hänninen, J., Rajasilta, M., Laine, P., Eklund, J., Montesino-Pouzols, F., Corona, F., Junker, K., Meier, H. E. M., and Dippner, J. W.: Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea area - Implications for environmental monitoring, Ecological Indicators, 53, 294-294, 10.1016/j.ecolind.2015.01.030, 2015. Wahl, M., Werner, F. J., Buchholz, B., Raddatz, S., Graiff, A., Matthiessen, B., Karsten, U., Hiebenthal, C., Hamer, J., Ino, M., Gulzow, E., Rilov, G., and Guy-Haim, T.: Season affects strength and direction of the interactive impacts of ocean warning and biotic stress in a coastal seaweed ecosystem, Limnology and Oceanography. 21, 10.1002/no.11350, 2019. Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.: Long-term trends in phytoplankton composition in the western and central Baltic Sea, Journal of Marine Systems, 87, 145-159, 10.1016/j.jmarsys.2011.03.010, 2011. Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 622, 1-16, 10.0354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and dirviers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. We		
 and potential expansion of the Finnish marine protected area network, Frontiers in Marine Science, 5, 402, 2018b. Voss, R., Hinrichsen, H. H., Quaas, M. F., Schmidt, J. O., and Tahvonen, O.: Temperature change and Baltic sprat: from observations to ecological-economic modelling, Ices Journal of Marine Science, 68, 1244-1256, 10.1093/icesjms/fs063, 2011. Vuorinen, I., Hänninen, J., Rajasilta, M., Laine, P., Eklund, J., Montesino-Pouzols, F., Corona, F., Junker, K., Meier, H. E. M., and Dippner, J. W.: Scenario simulations of future salinity and ecological consequences in the Baltic Sea and algocent North Sea areas - Implications for environmental monitoring, Ecological Indicators, 53, 294-294, 10.1016/j.ecolind.2015.01.030, 2015. Wahl, M., Werner, F. J., Buchholz, B., Raddatz, S., Graiff, A., Matthiessen, B., Karsten, U., Hiebenthal, C., Hamer, J., Ito, M., Gulzow, E., Rilov, G., and Guy-Haim, T.: Season affects strength and direction of the interactive impacts of ocean varming and biotic stress in a coastal seaweed ecosystem, Limnology and Oceanography, 21, 10.1002/no.11350, 2019. Wasmund, N., Tumada, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.: Long-term trends in phytoplankton composition in the western and central Baltic Sea, Journal of Marine Systems, 87, 145-159, 10.1016/j.jmarsys.2011.03.010, 2011. Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 622, 1-16, 10.3354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic m	1249	Virtanen, E. A., Viitasalo, M., Lappalainen, J., and Moilanen, A.: Evaluation, gap analysis,
 Marine Science, 5, 402, 2018b. Voss, R., Hinrichsen, H. H., Quaas, M. F., Schmidt, J. O., and Tahvonen, O.: Temperature change and Baltic sprat: from observations to ecological-economic modelling, Ices Journal of Marine Science, 68, 1244-1256, 10.1093/icesjms/fsr063, 2011. Vuorinen, I., Hänninen, J., Rajasilta, M., Laine, P., Eklund, J., Montesino-Pouzols, F., Corona, F., Junker, K., Meier, H. E. M., and Dippner, J. W.: Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea area. Implications for environmental monitoring, Ecological Indicators, 53, 294-294, 10.1016/j.ecolind.2015.01.030, 2015. Wahl, M., Werner, F. J., Buchholz, B., Raddatz, S., Graiff, A., Matthiessen, B., Karsten, U., Hiebenthal, C., Hamer, J., Ito, M., Gulzow, E., Rilov, G., and Guy-Haim, T.: Season affects strength and direction of the interactive impacts of ocean warming and biotic stress in a coastal seaweed ecosystem, Limnology and Oceanography. 21, 10.1002/hor.11350, 2019. Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.: Long-term trends in phytoplankton composition in the western and central Baltic Sea, Journal of Marine Systems, 87, 145-159, 10.1016/j.jmarsys.2011.03.010, 2011. Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 522, 1-16, 10.3354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoohenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps1279, 2015. Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seaweed freshwater discharge shifts the trophic balance in the coast	1250	and potential expansion of the Finnish marine protected area network, Frontiers in
 Voss, R., Hinrichsen, H. H., Quaas, M. F., Schmidt, J. O., and Tahvonen, O.: Temperature change and Baltic sprat: from observations to ecological-economic modelling, Ices Journal of Marine Science, 68, 1244-1256, 10.1093/acesjms/fsr063, 2011. Vuorinen, I., Hänninen, J., Rajasilta, M., Laine, P., Eklund, J., Montesino-Pouzols, F., Corona, F., Junker, K., Meier, H. E. M., and Dippner, J. W.: Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas - Implications for environmental monitoring, Ecological Indicators, 53, 294-294, 10.1016/j.ecolind.2015.01.030, 2015. Wahl, M., Werner, F. J., Buchholz, B., Raddatz, S., Graiff, A., Matthiessen, B., Karsten, U., Hiebenthal, C., Hamer, J., Ito, M., Gulzow, E., Rilov, G., and Guy-Haim, T.: Season affects strength and direction of the interactive impacts of ocean warming and biotic stress in a coastal seawed ecosystem, Limnology and Oceanography, 21, 10.1002/no.11350, 2019. Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.: Long-term trends in phytoplankton composition in the western and central Baltic Sea, Journal of Marine Systems, 87, 145-159, 10.1016/j.jmarsys.2011.03.010, 2011. Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 622, 1-16, 10.3354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps1294, 2015. Werner, F. J. and Mathiessen, B.: Warming has stronger direct than indirect effects on benthic microadgae in a seawed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J. a	1251	Marine Science, 5, 402, 2018b.
 change and Baltic sprat: from observations to ecological-economic modelling, Ices Journal of Marine Science, 68, 1244-1256, 10.1093/icesjms/fsr063, 2011. Vuorinen, I., Hänninen, J., Rajasilta, M., Laine, P., Eklund, J., Montesino-Pouzols, F., Corona, F., Junker, K., Meier, H. E. M., and Dippner, J. W.: Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas - Implications for environmental monitoring, Ecological Indicators, 53, 294-294, 10.1016/j.ecolind.2015.01.030, 2015. Wahl, M., Werner, F. J., Bucholz, B., Raddatz, S., Graiff, A., Matthiessen, B., Karsten, U., Hiebenthal, C., Hamer, J., Ito, M., Gulzow, E., Rilov, G., and Guy-Haim, T.: Season affects strength and direction of the interactive impacts of ocean warming and biotic stress in a coastal seaweed ecosystem, Limnology and Oceanography, 21, 10.1002/no.11350, 2019. Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.: Long-term trends in phytoplankton composition in the wester and central Baltic Sea, Journal of Marine Systems, 87, 145-159, 10.1016/j.jmarsys.2011.03.010, 2011. Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burneister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the wester mal centre Baltic Sea in response to climate change, Marine Ecology Progress Series, 522, 1-16, 10.0354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J. and Matthiessen, B.: Warmiig has stronger direct than indirect effects on benthic microalgae in a seaweed system in spring, Marine Biology, 164, 1-10, 	1252	Voss, R., Hinrichsen, H. H., Quaas, M. F., Schmidt, J. O., and Tahvonen, O.: Temperature
 Journal of Marine Science, 68, 1244-1256, 10.1093/icesjms/fsr063, 2011. Vuorinen, I., Hänninen, J., Rajasilta, M., Laine, P., Eklund, J., Montesino-Pouzols, F., Corna, F., Junker, K., Meier, H. E. M., and Dippner, J. W.: Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas - Implications for environmental monitoring, Ecological Indicators, 53, 294-294, 10.1016/j.ccolind.2015.01.030, 2015. Wahl, M., Werner, F. J., Buchholz, B., Raddatz, S., Graiff, A., Matthiessen, B., Karsten, U., Hiebenthal, C., Hamer, J., Ito, M., Gulzow, E., Rilov, G., and Guy-Haim, T.: Season affects strength and direction of the interactive impacts of ocean warming and biotic stress in a coastal seaweed ecosystem, Limnology and Oceanography, 21, 10.1002/no.11350, 2019. Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.: Long-term trends in phytoplankton composition in the western and central Baltic Sea, Journal of Marine Systems, 87, 145-159, 10.1016/j.jmarsys.2011.03.010, 2011. Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burrneister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 622, 1-16, 10.3354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J. and Matthiessen, B.: Temperature effects on seawed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489- x, 2016.<td>1253</td><td>change and Baltic sprat: from observations to ecological-economic modelling, Ices</td>	1253	change and Baltic sprat: from observations to ecological-economic modelling, Ices
 Vuorinen, I., Hänninen, J., Rajasilta, M., Laine, P., Eklund, J., Montesino-Pouzols, F., Corona, F., Junker, K., Meier, H. E. M., and Dippner, J. W.: Scenario simulations of trutre salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas - Implications for environmental monitoring, Ecological Indicators, 53, 294-294, 10.1016/j.ecolind.2015.01.030, 2015. Wahl, M., Werner, F. J., Buchholz, B., Raddatz, S., Graiff, A., Matthiessen, B., Karsten, U., Hiebenthal, C., Hamer, J., Ito, M., Gulzow, E., Rilov, G., and Guy-Haim, T.: Season affects strength and direction of the interactive impacts of ocean warming and biotic stress in a costal seaweed ecosystem, Limmology and Oceanography, 21, 10.1002/1no.11350, 2019. Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.: Long-term trends in phytoplankton composition in the western and central Baltic Sea, Journal of Marine Systems, 87, 145-159, 10.1016/j.jmarsys.2011.03.010, 2011. Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 622, 1-16, 103354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seaweed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00424-2015-3489- x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts th	1254	Journal of Marine Science, 68, 1244-1256, 10,1093/icesims/fsr063, 2011.
 Corona, F., Junker, K., Meier, H. E. M., and Dippner, J. W.: Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas - Implications for environmental monitoring, Ecological Indicators, 53, 294-294, 10.1016/j.ecolind.2015.01.030, 2015. Wahl, M., Werner, F. J., Buchholz, B., Raddatz, S., Graiff, A., Matthiessen, B., Karsten, U., Hiebenthal, C., Hamer, J., Ito, M., Gulzow, E., Rilov, G., and Guy-Haim, T.: Season affects strength and direction of the interactive impacts of ocean warming and biotic stress in a coastal seawed ecosystem, Linmology and Oceanography, 21, 10.1002/ho.11350, 2019. Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.: Long-term trends in phytoplankton composition in the western and central Baltic Sea, Journal of Marine Systems, 87, 145-159, 10.1016/j.jmarsys.2011.03.010, 2011. Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 622, 1-16, 10.3354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seawed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s0042-015-3489- x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18,	1255	Vuorinen, I., Hänninen, J., Rajasilta, M., Laine, P., Eklund, J., Montesino-Pouzols, F.,
 future salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas - Implications for environmental monitoring, Ecological Indicators, 53, 294-294, 10.1016/j.ecolind.2015.01.030, 2015. Wahl, M., Werner, F. J., Buchholz, B., Raddatz, S., Graiff, A., Matthiessen, B., Karsten, U., Hiebenthal, C., Hamer, J., Ito, M., Gulzow, E., Rilov, G., and Guy-Haim, T.: Season affects strength and direction of the interactive impacts of ocean warming and biotic stress in a coastal seaweed ecosystem, Linmology and Oceanography, 21, 10.1002/ho.11350, 2019. Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.: Long-term trends in phytoplankton composition in the western and central Baltic Sea, Journal of Marine Systems, 87, 145-159, 10.1016/j.jmarsys.2011.03.010, 2011. Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 622, 1-16, 10.3354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489-x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 161, 2423-2431, 10.1007/s00227-014-2518-3, 2014. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423-2431, 10.1007/s00227-014-2518-3, 2014. Woods,	1256	Corona F. Junker, K. Meier, H. F. M. and Dippner, J. W. Scenario simulations of
 areas - Implications for environmental monitoring, Ecological Indicators, 53, 294-294, 10.1016/j.ecolind.2015.01.030, 2015. Wahl, M., Werner, F. J., Buchholz, B., Raddatz, S., Graiff, A., Matthiessen, B., Karsten, U., Hiebenthal, C., Hamer, J., Ito, M., Gulzow, E., Rilov, G., and Guy-Haim, T.: Season affects strength and direction of the interactive impacts of ocean warming and biotic stress in a coastal seaweed ecosystem, Limnology and Oceanography, 21, 10.1002/ho.11350, 2019. Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.: Long-term trends in phytoplankton composition in the western and central Baltic Sea, Journal of Marine Systems, 87, 145-159, 10.1016/j.jmarsys.2011.03.010, 2011. Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 622, 1-16, 10.3354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seaweed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00424-015-3489-x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of oceastal zon	1257	future salinity and ecological consequences in the Baltic Sea and adjacent North Sea
 and and a strand and a strand and a strand and a strand a stra	1258	areas - Implications for environmental monitoring Ecological Indicators 53, 294-294
 Wahl, M., Werner, F. J., Buchholz, B., Raddatz, S., Graiff, A., Matthiessen, B., Karsten, U., Hiebenthal, C., Hamer, J., Ito, M., Gulzow, E., Rilov, G., and Guy-Haim, T.: Season affects strength and direction of the interactive impacts of ocean warming and biotic stress in a coastal seawed ecosystem, Limnology and Oceanography, 21, 10.1002/Ino.11350, 2019. Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.: Long-term trends in phytoplankton composition in the western and central Baltic Sea, Journal of Marine Systems, 87, 145-159, 10.1016/j.jmarsys.2011.03.010, 2011. Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 622, 1-16, 10.3354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seaweed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Occologia, 180, 889-901, 10.1007/s00442-015-3489-x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2014. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Wood, H. L	1259	10 1016/j ecolind 2015 01 030, 2015
 Wain, M., Weinel, C., Hamer, J., Ito, M., Gulzow, E., Rilov, G., and Guy-Haim, T.: Season affects strength and direction of the interactive impacts of ocean warming and biotic stress in a coastal seaweed ecosystem, Limnology and Oceanography, 21, 10.1002/no.11350, 2019. Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.: Long-term trends in phytoplankton composition in the western and central Baltic Sea, Journal of Marine Systems, 87, 145-159, 10.1016/j.jmarsys.2011.03.010, 2011. Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 622, 1-16, 10.3354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seawed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489- x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northerm Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/f</u>	1257	Wahl M Werner F I Buchholz B Raddatz S Graiff A Matthiessen B Karsten II
 Information, C., Manter, J., Ko, M., Gunzov, E., Kinov, G., and Sondor, Taimi, T., Deason affects strength and direction of the interactive impacts of ocean warming and biotic stress in a coastal seaweed ecosystem, Limnology and Oceanography, 21, 10.1002/hno.11350, 2019. Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.: Long-term trends in phytoplankton composition in the western and central Baltic Sea, Journal of Marine Systems, 87, 145-159, 10.1016/j.jimarsys.2011.03.010, 2011. Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 622, 1-16, 10.3354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seaweed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489-x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.11111/j.1365-2486.2012.02718.x, 2012. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, https://doi.org/10.1093/icesjms	1260	Hiebenthal C Hamer I Ito M Gulzow E Bilov G and Guy-Haim T Season
 antexis suchigin and direction of the inclusive impacts of occan ography, 21, 10.1002/Ino.11350, 2019. Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.: Long-term trends in phytoplankton composition in the western and central Baltic Sea, Journal of Marine Systems, 87, 145-159, 10.1016/j.jimarsys.2011.03.010, 2011. Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 622, 1-16, 10.3354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps1279, 2015. Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seaweed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489- x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, K., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, https://doi.org/10.1093/icesjms/fsab146, 2021. Wuods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Dan	1261	affects strength and direction of the interactive impacts of ocean warming and biotic
 Suess in a Colonality Sector System, Lininfology and Oceanography, 21, 10.1002/no.11350, 2019. Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.: Long-term trends in phytoplankton composition in the western and central Baltic Sea, Journal of Marine Systems, 87, 145-159, 10.1016/j.jmarsys.2011.03.010, 2011. Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 622, 1-16, 10.3354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seawed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489-x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northerm Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopol <i>Idotae balthica</i>, Marine Biology, 161, 2423-2431, 10.1007/s0027-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of	1262	stress in a coastal seaward access tem. Limpleau and Oceanography 21
 Yutho 2, 100, 2019. Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.: Long-term trends in phytoplankton composition in the western and central Baltic Sea, Journal of Marine Systems, 87, 145-159, 10.1016/j.jmarsys.2011.03.010, 2011. Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 622, 1-16, 10.3354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seaweed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489- x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://d</u>	1205	10 1002/lpc 11250, 2010
 Washudo, N., Tufmada, J., Sukkalner, S., Vandephile, L., and Kraberg, A.: Dong-termi trends in phytoplankton composition in the western and central Baltic Sea, Journal of Marine Systems, 87, 145-159, 10.1016/j.jmarsys.2011.03.010, 2011. Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 622, 1-16, 10.3354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seaweed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Occologia, 180, 889-901, 10.1007/s00442-015-3489- x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Woods, P., Macdonald, J., Bárðarson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/icesjms/fsab146</u>, 202	1204	10.1002/110.11530, 2019. Wasmund N. Twimele, I. Swillsonen, C. Vandanitte, I. and Kushana, A. J. and tame term trands
 ¹²⁶⁶ In phytoplankton composition in the Western and central Baltic Sea, Journal of Marine Systems, 87, 145-159, 10.1016/j.jimarsys.2011.03.010, 2011. ¹²⁶⁷ Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 622, 1-16, 10.3354/meps12994, 2019. ¹²⁷⁰ Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. ¹²⁷⁷ Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seaweed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. ¹²⁸⁸ Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489-x, 2016. ¹²⁸¹ Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. ¹²⁸⁴ Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423-2431, 10.1007/s00227-014-2518-3, 2014. ¹²⁸⁵ Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/icesjms/fsab146</u>, 021. ¹²⁹⁰ Wulff, A.,	1203	washund, N., Tulmala, J., Sulkkanen, S., Vandepitte, L., and Kraberg, A.: Long-term trends
 Systems, 87, 145-159, 10.1016/J.jmärys.2011.03.010, 2011. Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 622, 1-16, 10.3354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenchner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seaweed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489- x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/isesjms/fsab146</u>, 2021. Wulff, A., Karlberg, M., Olofsson, M., Tor	1200	In phytoplankton composition in the western and central Baltic Sea, Journal of Marine
 Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burneister, C., Hansen, K., and Sadkowlak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 622, 1-16, 10.3354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seaweed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489- x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.11111/j.1365-2486.2012.02718.x, 2012. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, https://doi.org/10.1093/icesjms/fsab146, 2021. Wulff, A.,	120/	Systems, 87, 145-159, 10.1010/j.jmarsys.2011.05.010, 2011.
 B.: Extension of the growing season of phytoplanktion in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 622, 1-16, 10.3354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seaweed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489- x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/icesjms/fsab146</u>, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wähström, I., Höglund, A., Almroth-Ros	1268	wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak,
 response to climate change, Marine Ecology Progress Series, 622, 1-16, 10.3354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seaweed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489-x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423-2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, https://doi.org/10.1093/icesjms/fsab146, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-321-3, 2018. Wallström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikkshs, M., and Andersson, H. C.: Combined climate change and nutrient load im	1269	B.: Extension of the growing season of phytoplankton in the western Baltic Sea in
 10.3354/meps12994, 2019. Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seaweed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489- x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopol <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, https://doi.org/10.1093/icesjms/fsab146, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wählström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K.,	1270	response to climate change, Marine Ecology Progress Series, 622, 1-16,
 Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff, E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seaweed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489- x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, https://doi.org/10.1093/icesjms/fsab1146, https://doi.org/10.1093/icesjms/fsab146, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1271	10.3354/meps12994, 2019.
 E.: Long-term progression and drivers of coastal zoobenthos in a changing system, Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seaweed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489- x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/icesjms/fsab146</u>, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wählström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1272	Weigel, B., Andersson, H. C., Meier, H. E. M., Blenckner, T., Snickars, M., and Bonsdorff,
 Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015. Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seaweed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489- x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/icesjms/fsab146</u>, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1273	E.: Long-term progression and drivers of coastal zoobenthos in a changing system,
 Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on benthic microalgae in a seaweed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489- x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/icesjms/fsab146</u>, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wählström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1274	Marine Ecology Progress Series, 528, 141-159, 10.3354/meps11279, 2015.
 benthic microalgae in a seaweed system in spring, Marine Biology, 164, 1-10, 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489- x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>. <u>https://doi.org/10.1093/icesjms/fsab146</u>, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Pilkshs, M., and Andersson, H. C.: Combined climate change and nutrinet load impacts 	1275	Werner, F. J. and Matthiessen, B.: Warming has stronger direct than indirect effects on
 1277 10.1007/s00227-017-3109-x, 2017. Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489- x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/icesjms/fsab146</u>, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wählström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1276	benthic microalgae in a seaweed system in spring, Marine Biology, 164, 1-10,
 Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489- x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/icesjms/fsab146</u>, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wählström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1277	10.1007/s00227-017-3109-x, 2017.
 top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489- x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/icesjms/fsab146</u>, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1278	Werner, F. J., Graiff, A., and Matthiessen, B.: Temperature effects on seaweed-sustaining
 x, 2016. Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/icesjms/fsab146</u>, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wählström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1279	top-down control vary with season, Oecologia, 180, 889-901, 10.1007/s00442-015-3489-
 Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/icesjms/fsab146</u>, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1280	x, 2016.
 coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519, 10.1111/j.1365-2486.2012.02718.x, 2012. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/icesjms/fsab146</u>, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1281	Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the
 10.1111/j.1365-2486.2012.02718.x, 2012. Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/icesjms/fsab146</u>, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1282	coastal zone of the northern Baltic Sea, Global Change Biology, 18, 2509-2519,
 Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/icesjms/fsab146</u>, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1283	10.1111/j.1365-2486.2012.02718.x, 2012.
 ocean acidification on the marine isopod <i>Idotea balthica</i>, Marine Biology, 161, 2423- 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/icesjms/fsab146</u>, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1284	Wood, H. L., Sköld, H. N., and Eriksson, S. P.: Health and population-dependent effects of
 2431, 10.1007/s00227-014-2518-3, 2014. Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/icesjms/fsab146</u>, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1285	ocean acidification on the marine isopod <i>Idotea balthica</i> , Marine Biology, 161, 2423-
 Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps, G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/icesjms/fsab146</u>, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1286	2431, 10.1007/s00227-014-2518-3, 2014.
 G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/icesjms/fsab146</u>, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1287	Woods, P., Macdonald, J., Bárðarson, H., Bonanomi, S., Boonstra, W., Cornell, G., Cripps,
 management to support resilience and transition under socio-ecological change, ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/icesjms/fsab146</u>, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1288	G., Danielsen, R., Färber, L., and Ferreira, A.: A review of adaptation options in fisheries
 Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsab1146</u>, <u>https://doi.org/10.1093/icesjms/fsab146</u>, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1289	management to support resilience and transition under socio-ecological change, ICES
 https://doi.org/10.1093/icesjms/fsab146, 2021. Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1290	Journal of Marine Science, https://doi.org/10.1093/icesjms/fsab1146,
 Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1291	https://doi.org/10.1093/icesjms/fsab146, 2021.
 Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1292	Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S.,
 climate-driven change in a Baltic Sea summer microplanktonic community, Marine Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1293	Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination:
 Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018. Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1294	climate-driven change in a Baltic Sea summer microplanktonic community. Marine
 Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts 	1295	Biology, 165:63, 1-15, 10.1007/s00227-018-3321-3, 2018.
1297 Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts	1296	Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B. R., Gröger, M., Eilola, K.,
	1297	Plikshs, M., and Andersson, H. C.: Combined climate change and nutrient load impacts

38

1298	on future habitats and eutrophication indicators in a eutrophic coastal sea, Limnology
1299	and Oceanography, 65, 2170-2187, 2020.

- 1300 Yletyinen, J., Bodin, O., Weigel, B., Nordström, M. C., Bonsdorff, E., and Blenckner, T.:
- 1301 Regime shifts in marine communities: a complex systems perspective on food web

dynamics, Proceedings of the Royal Society B - Biological Sciences, 283, 20152569,
10.1098/rspb.2015.2569, 2016.